Installation and servicing instructions for contractors

Hydronic Gas Condensing Boiler

Condens 5000 W

ZSB 30-2 A ... | ZWB 37-2 A ...
Contents

1 Explanation of symbols and safety instructions 3
 1.1 Explanation of symbols .. 3
 1.2 General safety instructions 3

2 Standard delivery .. 4

3 Product details .. 5
 3.1 Declaration of conformity 5
 3.2 Appliance types .. 5
 3.3 Explanation of model code 5
 3.4 Gas type .. 5
 3.5 Type plate .. 5
 3.6 Description of appliance 6
 3.7 Accessories .. 6
 3.8 Dimensions and minimum clearances 7
 3.9 Appliance layout ... 8
 3.10 Electrical wiring diagram 10
 3.11 Specification ZSB 30-2 12
 3.12 Specification ZWB 37-2 13
 3.13 Condensate composition 14

4 Regulations ... 14

5 Pre-Installation ... 14
 5.1 Water system and pipe work 14
 5.2 Condensate pipe work .. 16
 5.2.1 Internal connections 16

6 Installation ... 18
 6.1 Important notes .. 18
 6.2 Checking the size of the expansion vessel 18
 6.3 Siting the appliance .. 19
 6.4 Pre-installing pipes ... 19
 6.5 Fitting the appliance ... 21
 6.6 Checking the connections 25

7 Electrical connections ... 25
 7.1 General information .. 25
 7.2 Connecting accessories 25
 7.2.1 Connecting Bosch heating controls 26
 7.2.2 Connection of other controllers, using the switched live function .. 26
 7.2.3 Refit control panel cover 26
 7.2.4 Connecting the DHW cylinder 27
 7.2.5 Connecting temperature limiter TB 1 from the flow of an underfloor heating system 27

8 Commissioning ... 28
 8.1 Before commissioning ... 29
 8.2 Switching the appliance on/off 29
 8.3 Starting the central heating 29
 8.4 Setting the heating control unit 29
 8.5 After commissioning .. 30

9 Thermal disinfection on appliances with hot water cylinder 32

10 Pump anti-seizing function 32

11 Heatronic settings .. 32
 11.1 General information .. 32
 11.2 Overview of service functions 33
 11.2.1 Service level 1 ... 33
 11.2.2 Service level 2 ... 33
 11.3 Description of service functions 34
 11.3.1 Service level 1 ... 34
 11.3.2 Service level 2 ... 36

12 Converting the appliance to different gas types 37
 12.1 Gas-type conversion .. 37
 12.2 Setting the gas-air ratio (CO₂ or O₂) 37
 12.3 Checking the gas supply pressure 39

13 Flue gas testing .. 39
 13.1 Central heating boost button 39
 13.2 Checking flue system for leaks 39

14 Environment / disposal 40

15 Inspection/Servicing ... 40
 15.1 Checklist for inspection/servicing (Inspection/Servicing report) .. 41
 15.2 Description of various servicing operations 42
 15.2.1 Retrieving last fault stored (service function 6.A) . . 42
 15.2.2 Checking electrodes 42
 15.2.3 Strainer in cold water pipe (ZWB) 42
 15.2.4 Plate type heat exchanger (ZWB) 42
 15.2.5 Heat exchanger ... 44
 15.2.6 Burner .. 45
 15.2.7 Diaphragm in mixer unit 46
 15.2.8 Cleaning condensate trap 46
 15.2.9 Checking the expansion vessel 46
 15.2.10 Setting the heating system pressure 46
 15.2.11 Checking electrical wiring 46

16 Displays ... 47
Explanation of symbols and safety instructions

1.1 Explanation of symbols

Warnings
In warnings, signal words at the beginning of a warning are used to indicate the type and seriousness of the ensuing risk if measures for minimising danger are not taken.

The following signal words are defined and can be used in this document:

- **DANGER** indicates that severe or life-threatening personal injury will occur.
- **WARNING** indicates that severe to life-threatening personal injury may occur.
- **CAUTION** indicates that minor to medium personal injury may occur.
- **NOTICE** indicates that material damage may occur.

Important information

This symbol indicates important information where there is no risk to people or property.

Additional symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶</td>
<td>Step in an action sequence</td>
</tr>
<tr>
<td>➔</td>
<td>Cross-reference to another part of the document</td>
</tr>
<tr>
<td>*</td>
<td>List entry</td>
</tr>
<tr>
<td>–</td>
<td>List entry (second level)</td>
</tr>
</tbody>
</table>

Table 1

1.2 General safety instructions

Notices for the target group

These installation instructions are intended for gas, plumbing, heating and electrical contractors. All instructions must be observed. Failure to comply with instructions may result in material damage and personal injury, including danger to life.

- Read the installation instructions (heat source, heating controller, etc.) before installation.
- Observe the safety instructions and warnings.
- Follow national and regional regulations, technical regulations and guidelines.

Determined use

The product may only be used in a domestic situation for the heating of central heating water and for DHW heating in closed-loop DHW and heating systems. Any other use is considered inappropriate. Any damage that may result from misuse is excluded from liability.

This appliance is not suitable to be used as a pool heater.

If you smell gas

A gas leak could potentially cause an explosion. If you smell gas, observe the following rules.

- Prevent flames or sparks:
 - Do not smoke, do not use a lighter or strike matches.
 - Do not operate any electrical switches or unplug any equipment.
 - Do not use the telephone or ring doorbells.
- Turn off the gas supply at the main shut-off valve or at the gas meter.
- Open windows and doors.
- Warn your neighbours and leave the building.
- Prevent anyone from entering the building.
- Move well away from the building: call the emergency services and the gas supplier.

Danger to life from poisoning by flue gas

There is a danger to life from escaping flue gas.

- Ensure that flues and gaskets are not damaged.

Danger of death from poisoning by flue gas due to inadequate combustion

Danger of death due to flue gas leak. If flues are damaged or leaking, or if you smell flue gas, observe the following rules.

- Close the fuel infeed.
- Open doors and windows.
- If necessary, warn all residents and leave the building.
- Prevent third parties from entering the building.
- Rectify any damage to the flue gas pipe immediately.
- Check the combustion air supply.
- Do not cover or reduce the size of ventilation openings in doors, windows and walls.
Ensure that there is adequate combustion air supply, including for any appliances installed at a later date, e.g. extractor fans, kitchen fans or air conditioning units that discharge air to the outside.

Never operate the device if there is insufficient combustion air supply.

Open flued Appliance

Do not use an unlined Masonry chimney as the flue for this appliance.

Installation, commissioning and maintenance

Installation, commissioning and maintenance must only be carried out by an approved contractor.

Carry out a gas tightness test after completing work on gas-carrying components.

In the case of open flue operation: Ensure that the installation location meets the ventilation requirements.

Only use original spares.

Electrical work

Electrical work must only be carried out by electrical installation contractors.

Before starting electrical work:

Isolate all poles of the mains voltage and secure against reconnection.

Make sure the mains voltage is disconnected.

Observe the wiring diagrams of other system components as well.

Handover to the user

When handing over, instruct the user how to operate the heating system and inform the user about its operating conditions.

Explain how to operate the heating system and draw the user's attention to any safety relevant action.

Explain that conversions and repairs must only be carried out by a competent person.

Point out the need for inspections and maintenance for safe and environmentally-compatible operation.

Leave the installation instructions and the operating instructions with the user for safekeeping.

Do not spray aerosols in the vicinity of this appliance while in operation.

Do not use or store flammable materials in or near this appliance.

Do not place articles on or against this appliance.

Do not modify this appliance.
3 Product details

3.1 Declaration of conformity
The design and operating characteristics of this product comply with the European and national requirements.

The CE marking declares that the product complies with all the applicable EU legislation, which is stipulated by attaching this marking.

3.2 Appliance types
ZSB appliances are boilers for heating. They can be fitted with the diverter valve accessory to connect to an indirectly heated hot water cylinder.

ZWB appliances are combi boilers for central heating (CH) and domestic hot water (DHW) heating according to the instantaneous water heating principle.

3.3 Explanation of model code

<table>
<thead>
<tr>
<th>Code</th>
<th>Central heating appliance</th>
<th>Cylinder connection</th>
<th>DHW heating</th>
<th>Condensing boiler technology</th>
<th>Output up to</th>
<th>DHW output up to</th>
<th>Version</th>
<th>Fan-assisted appliance without draught hood</th>
<th>Natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSB 30-2</td>
<td>A 23</td>
<td>S2414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZSB 30-2</td>
<td>A 31</td>
<td>S2414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZWB 37-2</td>
<td>A 23</td>
<td>S2414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZWB 37-2</td>
<td>A 31</td>
<td>S2414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Appliances can be converted to LPG.

Table 2

<table>
<thead>
<tr>
<th>Code number</th>
<th>Wobbe index (W_s) (15 °C)</th>
<th>Gas type</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>44.0 - 55.0 MJ/m³</td>
<td>NG</td>
</tr>
<tr>
<td>31</td>
<td>72.9 - 87.2 MJ/m³</td>
<td>LPG</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>LPG type</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Propane</td>
<td>recommended</td>
</tr>
<tr>
<td>Commercial Butane</td>
<td>permitted</td>
</tr>
<tr>
<td>General Product</td>
<td>permitted</td>
</tr>
<tr>
<td>Universal LPG (U-LPG)</td>
<td>permitted</td>
</tr>
</tbody>
</table>

Table 4

3.4 Gas type
The code number indicates the gas family:

3.5 Type plate
The type plate [47] can be found on the inside of the appliance at the bottom right (Fig. 3, page 8).

It contains details of the output of the appliance, the order number, the approval data and the serial number in encoded form.
3.6 Description of appliance

- Wall mounted boiler; installation independent of chimney location or room size.
- Intelligent heating circuit pump control when connected to a weather-dependent heating controller.
- Heatronic 3 controls with 2-wire BUS.
- ZWB appliances can be supplied with water preheated by solar energy. → page 18
- Optimised electronic heating circuit pump with:
 - 2 proportional pressure curves
 - 3 constant pressure curves
 - 6 stages can be selected
 - Run-dry protection and anti-seizing function
- Connecting lead with mains plug.
- Display.
- Automatic ignition.
- Modulating output control.
- Fully featured safety system provided by Heatronic module with flame failure detection and solenoid valves to EN 298.
- No minimum water circulation rate required.
- Suitable for underfloor heating.
- Connection option for concentric pipe for flue gas/combustion air Ø 80/125 mm, Ø 60/100 mm.
- Variable speed fan.
- Premix burner.
- Temperature sensor and temperature control for central heating.
- Temperature sensor in flow.
- Safety temperature limiter in 24 V electrical circuit.
- Pressure relief valve, pressure gauge, expansion vessel.
- Optional for DHW cylinder temperature sensor (NTC).
- Flue gas temperature limiter.
- DHW priority.
- Plate type heat exchanger (ZWB).
- Motorised three-way valve (ZWB).
- Filling loop (ZWB).
- Pre-plumbing jig.

3.7 Accessories

Below is a list of typical accessories for this appliance. You can find comprehensive details of all available accessories in our catalogue.

- Flue kits.
- Weather-compensated controller, e.g. FW 100.
- Room temperature controller, e.g. FR 10, FR 110.
- Digital time switch, e.g. DT 10 RF, DT 20 RF.
- Cylinder temperature sensor SF 2 for third party cylinders.
- Optional Diverter Valve Kit for DHW cylinder connection including cylinder temperature sensor (ZSB only).
3.8 Dimensions and minimum clearances

Fig. 2

[1] Pre-plumbing jig
[2] Casing
[3] Fascia

A Additional 30 mm above elbow
B Using 100 mm flue kit: 1112 mm / 120 mm flue kit: 1152 mm
C 20 mm to reversible door / 600 mm front clearance for service
Key to figure 3:

1. Heatronic 3
2. Main switch
3. Burner ON indicator
4. Service button
5. Central heating boost button
6. Here, a weather-compensated control unit or a time switch (accessories) can be plugged in
7. CH Flow temperature control
8. DHW temperature control
9. Holiday button
10. eco button
11. reset button
12. Display
13. DHW (ZWB)
14. CH flow
15. Adaptor for condensate hose
16. Condensate syphon
17. Gas supply pressure test port
18. Gas valve
19. DHW temperature sensor
20. Plate-type heat exchanger (ZWB)
21. Automatic air vent valve
22. Adjustable gas throttle
23. Air inlet pipe
24. Flue gas temperature limiter
25. Test point for control pressure
26. Fan
27. Expansion vessel
28. Mixer unit
29. Removable cover
30. Flue pipe
31. Combustion air inlet
32. Bracket
33. Set of electrodes
34. Heat exchanger
35. Flow temperature sensor
36. Temperature limiter for heat exchanger
37. Access port for cleaning heat exchanger
38. Condensate tray
39. Turbine (ZWB)
40. Pressure relief valve (heating circuit)
41. 3-way diverter valve
42. Type plate
43. Heating circuit pump
44. Drain tap
45. Heating return
46. Cold water inlet
47. Gas connection
48. Pressure gauge
49. Filling loop (ZWB)
3.10 Electrical wiring diagram

Fig. 4
[1] Spark transformer
[2] CH temperature control
[3] 230 V room stat/programmer / wiring center ZSB
[4] Safety solenoid
[5] Safety solenoid
[7] Fan
[8] Flame sensing electrode
[9] Spark electrodes
[10] Flow NTC
[13] Earth
[14] Mains supply
[15] DHW sensor (ZWB only)
[16] Pump
[17] Pump control
[18] Diverter valve
[19] Flow turbine (ZWB only)
[20] Pump supply
[21] DHW temperature control
[22] External frost stat (optional)
[23] Fluse slow T 0.5 A
[24] Fluse slow T 1.6 A
[25] Code plug
3.11 Specification ZSB 30-2 ...

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Natural gas</th>
<th>Propane</th>
<th>Butane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. heat output (P_{max}) 40/30 °C</td>
<td>kW</td>
<td>32.1</td>
<td>32.1</td>
<td>36.6</td>
</tr>
<tr>
<td>Max. heat output (P_{max}) 50/30 °C</td>
<td>kW</td>
<td>31.8</td>
<td>31.8</td>
<td>36.3</td>
</tr>
<tr>
<td>Max. heat output (P_{max}) 80/60 °C</td>
<td>kW</td>
<td>30.0</td>
<td>30.0</td>
<td>34.2</td>
</tr>
<tr>
<td>Max. gas consumption (Q_{max}), central heating</td>
<td>MJ/h</td>
<td>123.4</td>
<td>123.4</td>
<td>140.5</td>
</tr>
<tr>
<td>Min. heat output (P_{min}) 40/30 °C</td>
<td>kW</td>
<td>8.6</td>
<td>12.4</td>
<td>14.2</td>
</tr>
<tr>
<td>Min. heat output (P_{min}) 50/30 °C</td>
<td>kW</td>
<td>8.6</td>
<td>12.3</td>
<td>14.0</td>
</tr>
<tr>
<td>Min. heat output (P_{min}) 80/60 °C</td>
<td>kW</td>
<td>7.7</td>
<td>11.0</td>
<td>12.6</td>
</tr>
<tr>
<td>Min. gas consumption (Q_{min}), central heating</td>
<td>MJ/h</td>
<td>31.9</td>
<td>45.9</td>
<td>52.3</td>
</tr>
<tr>
<td>Max. heat output (P_{nW}), DHW</td>
<td>kW</td>
<td>30.9</td>
<td>30.9</td>
<td>35.2</td>
</tr>
<tr>
<td>Max. gas consumption (Q_{nW}), DHW</td>
<td>MJ/h</td>
<td>123.4</td>
<td>123.4</td>
<td>140.5</td>
</tr>
</tbody>
</table>

Gas supply rate
- Natural gas (gross heating value 37.8 MJ/m³) m³/h 3.2
- Butane/propane (gross heating value 50 MJ/kg) kg/h - 2.4

Permissible gas supply pressure
- NG kPa 1.1 - 3.0
- LPG kPa - 2.75

Expansion vessel
- Pre-charge pressure kPa 75
- Total capacity l 7

Calculation values for calculating cross-section to EN 13384
- Flue gas mass flow rate, max./min. rated g/s 13.6/3.7, 12.8/5.2
- Flue gas temperature 80/60 °C max./min. rated °C 76/58, 76/58
- Flue gas temperature 40/30 °C max./min. rated °C 55/33, 55/33
- Residual pump head Pa 80
- CO₂ at max. rated output % 9.6
- CO₂ min. rated output % 9.0

Condensate
- Max. condensate quantity in heating mode (t_R = 30 °C) l/h 2.7
- pH level, approx. 4.8

General data
- Power supply voltage AC ... V 220-240
- Frequency Hz 50
- Max. power consumption (central heating mode) W 150
- EMC limit class - B
- Noise output level ≤ dB(A) 43
- Appliance enclosure rating IP X4D
- Max. flow temperature °C Approx. 90
- Max. permissible operating pressure (P_{Mg}) heating kPa 300
- Permissible ambient temperature °C 0 - 50
- Nominal capacity of appliance heating l 3.5
- Weight (excluding packaging) kg 46.5
- Dimensions, W x H x D mm 440 x 760 x 360

Table 5
3.12 Specification ZWB 37-2...

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Natural gas</th>
<th>Propane</th>
<th>Butane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. heat output ((P_{\text{max}})) 40/30 °C</td>
<td>kW</td>
<td>32.1</td>
<td>32.1</td>
<td>36.6</td>
</tr>
<tr>
<td>Max. heat output ((P_{\text{max}})) 50/30 °C</td>
<td>kW</td>
<td>31.8</td>
<td>31.8</td>
<td>36.3</td>
</tr>
<tr>
<td>Max. heat output ((P_{\text{max}})) 80/60 °C</td>
<td>kW</td>
<td>30.0</td>
<td>30.0</td>
<td>34.2</td>
</tr>
<tr>
<td>Max. gas consumption ((Q_{\text{max}})), central heating</td>
<td>MJ/h</td>
<td>123.4</td>
<td>123.4</td>
<td>140.5</td>
</tr>
<tr>
<td>Min. heat output ((P_{\text{min}})) 40/30 °C</td>
<td>kW</td>
<td>10.6</td>
<td>15.7</td>
<td>17.9</td>
</tr>
<tr>
<td>Min. heat output ((P_{\text{min}})) 50/30 °C</td>
<td>kW</td>
<td>10.5</td>
<td>15.5</td>
<td>17.7</td>
</tr>
<tr>
<td>Min. heat output ((P_{\text{min}})) 80/60 °C</td>
<td>kW</td>
<td>9.4</td>
<td>13.9</td>
<td>15.9</td>
</tr>
<tr>
<td>Min. gas consumption ((Q_{\text{min}})), central heating</td>
<td>MJ/h</td>
<td>39.1</td>
<td>57.9</td>
<td>65.9</td>
</tr>
<tr>
<td>Max. heat output ((P_{\text{nW}})), DHW</td>
<td>kW</td>
<td>37.0</td>
<td>37.0</td>
<td>42.2</td>
</tr>
<tr>
<td>Max. gas consumption ((Q_{\text{nW}})), DHW</td>
<td>MJ/h</td>
<td>147.7</td>
<td>147.7</td>
<td>168.5</td>
</tr>
</tbody>
</table>

Gas supply rate
- Natural gas H (gross heating value 37.8 MJ/m³) m³/h: 3.9
- Butane/propane (gross heating value 50 MJ/kg) kg/h: 2.9

Permissible gas supply pressure
- NG: 1.1 - 3.0 kPa
- LPG: 2.75 kPa

Expansion vessel
- Pre-charge pressure: kPa 75
- Total capacity: l 7

DHW
- Max. DHW flow rate: l/min 13.0
- Outlet temperature range °C: 40 - 60
- Max. cold water inlet temperature °C: 60
- Max. permissible water supply pressure kPa: 1000
- Min. inlet pressure kPa: 300
- Specific flow rate acc. to EN 625 (D) l/min 16.9

Calculation values for calculating cross-section to EN 13384
- Flue gas mass flow rate, max./min. rated g/s: 16.2/4.5
- Flue gas temperature 80/60 °C max./min. rated °C: 83/58
- Flue gas temperature 40/30 °C max./min. rated °C: 60/35
- Residual pump head Pa: 80
- CO₂ at max. rated output %: 9.7
- CO₂ min. rated output %: 9.1

Condensate
- Max. condensate quantity in heating mode (\(t_R = 30 \degree C\)) l/h: 2.7
- pH level, approx.: 4.8

General data
- Power supply voltage AC ... V: 220 - 240
- Frequency Hz: 50
- Max. power consumption (central heating mode) W: 160
- EMC limit class: B
- Sound pressure level (in heating mode) ≤ dB(A): 45
- Appliance enclosure rating IP: X4D
- Max. flow temperature °C: Approx. 90
- Max. permissible operating pressure (\(P_{\text{Mx}}\)) heating kPa: 300
- Permissible ambient temperature °C: 0 - 50
- Nominal capacity of appliance heating l: 3.75
- Weight (excluding packaging) kg: 48.5
- Dimensions, W x H x D mm: 440 x 760 x 360

Table 6
3.13 Condensate composition

<table>
<thead>
<tr>
<th>Material</th>
<th>Value [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium</td>
<td>1.2</td>
</tr>
<tr>
<td>Lead</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Cadmium</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Chrome</td>
<td>≤ 0.005</td>
</tr>
<tr>
<td>Halogenated hydrocarbons</td>
<td>≤ 0.002</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>0.015</td>
</tr>
<tr>
<td>Copper</td>
<td>0.028</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.1</td>
</tr>
<tr>
<td>Mercury</td>
<td>≤ 0.0001</td>
</tr>
<tr>
<td>Sulphate</td>
<td>1</td>
</tr>
<tr>
<td>Zinc</td>
<td>≤ 0.015</td>
</tr>
<tr>
<td>Tin</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Vanadium</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>pH value</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table 7

4 Regulations

- Observe all regulations and standards applicable to the system in your country prior to installation and commissioning.
- Make sure the entire system satisfies the following standards, regulations and directives.

Where no specific instructions is given, reference should be made to the following standards:
- AS 1596 LPG storage and handling.
- AS 1697 Installation and maintenance of steel pipe systems for gas.
- AS 1910 Water supply - float control valves for use in hot and cold water.
- AS 3498 Authorization requirements for plumbing products - water heaters and hot water storage tanks.
- AS 3500 National plumbing and drainage code.
- AS 4032 Water supply - valves for the control of hot water supply temperatures.
- AS/NZS263.1.2 Gas fired water heaters for hot water supply and/or central heating.
- AS/NZS 5601 Gas Installations.
- AS/NZS 3000 Electrical Installations.

5 Pre-Installation

5.1 Water system and pipe work

Plastic pipe work:
- Any plastic pipe work must have a polymeric barrier with 600 mm (minimum) length of copper pipe connected to the boiler.
- Plastic pipe work used for underfloor heating must be correctly controlled with a thermostatic blending valve limiting the temperature of the circuits to approximately 50 °C.

Primary systems connections/valves:
- All system connections, taps and mixing valves must be capable of sustaining a pressure up to 3 bar (300 kPa).
- Bosch recommends that thermostatic radiator valves (TRV’s) be used on all radiators within the sleeping accommodation but not the radiator where the room thermostat is sited. This must be fitted with lock-shield valves and left open.
- A drain point is required at the lowest part of the system.
- An air vent is required at all the high points in the system.

NOTICE:
- A Artificially softened water must not be used to fill the CH system.

Sealed primary system:
- The CH sealed system must be filled using an approved filling loop or comply with figure 5 for system fill.
- Do not use galvanised pipes or radiators.
System fill

Fig. 5
A System fill
AA Auto air vent
B System make up
CV Check valve
D 1000 mm (39 in.) above the highest point of the system
SV Stop valve
[1] Heating return
[2] Hose union
[3] Temporary hose
[4] Test point
[5] Mains supply
[6] Make-up vessel
[7] Fill point

Fig. 6 Additional expansion vessel
[1] Boiler expansion vessel - CH
[2] Extra expansion vessel - CH return
[3] Pressure relief discharge-

S and Y plan systems:

NOTICE: The boiler is fitted with its own internal bypass.

NOTICE:
- A drain point should be fitted at the lowest part of the heating circuit and beneath the boiler.

Optional diverter valve
This boiler is designed to operate on a sealed system only and will require a second return pipe from the water cylinder to the wall mounting frame.

Hot water supplied to sanitary fixtures
In accordance with AS 3498 a temperature control device such as a tempering valve must be fitted when hot water is supplied to sanitary fixtures used primarily for the purposes of personal hygiene.
5.2 Condensate pipe work

NOTICE:

- Where a new or replacement boiler is being installed and freezing conditions are possible, access to an internal drain “gravity discharge” point should be one of the factors considered in determining boiler location.
- The condensate pipe must be a minimum of 40 mm Ø plastic pipe.
- The condensate pipe work must fall at least 50 mm per metre towards the outlet and should take the shortest practicable route.
- Ensure that there are no blockages in the pipe run.

Key to condensate illustrations

1. Condensate discharge
2. Air gap (20mm)
3. Tundish
4. Self sealing device
5. Dishwasher connection
6. Vent stack

Table 9
Alternatively if the first option is not possible an internal kitchen or bathroom waste pipe can be used.

Fig. 12 Disposal to a waste pipe

A washing machine waste pipe or bifurcated pipe etc. can also be used.

Fig. 13 Branched pipe disposal
Installation

6.1 Important notes

- Prior to installation, obtain the approval of the gas supply utility.

Supply of water preheated by solar energy (only ZWB)

- To prevent water circulation noises:
 - Fit an overflow valve, or, with two-pipe heating systems, a 3-way valve to the radiator furthest from the boiler.

Heating system water

Unsuitable fill and top-up water in the heating system can result in the heat exchanger scaling up and failing prematurely.

<table>
<thead>
<tr>
<th>Hardness range</th>
<th>Water treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>soft (≤ 8.4 °dH)</td>
<td>not required</td>
</tr>
<tr>
<td>medium (8.4 - 14 °dH)</td>
<td>recommended</td>
</tr>
<tr>
<td>hard (≥ 14 °dH)</td>
<td>required</td>
</tr>
</tbody>
</table>

Anti-freeze

The following anti-freeze fluids are permitted:

<table>
<thead>
<tr>
<th>Product</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varidos FSK</td>
<td>22 - 55 %</td>
</tr>
<tr>
<td>Alphi - 11</td>
<td>see manufacturer’s instructions</td>
</tr>
<tr>
<td>Glythermin NF</td>
<td>20 - 62 %</td>
</tr>
</tbody>
</table>

Corrosion inhibitor

The following corrosion inhibitors are permitted:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernox</td>
<td>see supplier information</td>
</tr>
<tr>
<td>Sentinel</td>
<td>see supplier information</td>
</tr>
</tbody>
</table>

Gravity fed heating systems

- Connect the appliance to the existing pipework via a low loss header with a dirt separator.

Underfloor heating systems

- The appliance is suitable for underfloor heating systems; observe permissible flow temperatures.

If a room thermostat is used

- Do not fit a thermostatic radiator valve to the radiator in the primary room.

To increase efficiency of the system, thermostatic radiator valves should be used on all other radiators.

Sealants

In our experience, adding sealants to the heating water may result in problems (deposits in the heat exchanger). We therefore advise against using them.

Water circulation noises

To prevent water circulation noises:

- Fit an overflow valve, or, with two-pipe heating systems, a 3-way valve to the radiator furthest from the boiler.

Mono-lever taps and thermostatic mixer taps

All types of mono-lever taps and thermostatic mixer taps can be used.

LPG

To protect the appliance against excessive pressure:

- Fit a pressure regulator with a safety valve.

6.2 Checking the size of the expansion vessel

The integrated expansion vessel is pre-charged to 0.75 bar (75 kPa). Where the system volume is more than 100 litres or exceeds 2.65 bar (265 kPa) at maximum heating temperature, an additional expansion vessel must be fitted as close as possible to the appliance in the central heating return.

All expansions vessels must have the same pressure.
6.3 Siting the appliance

Regulations concerning the installation site
► Observe relevant national regulations.
► Consult the flue kit installation instructions for details of minimum clearances required for flue gas routing.
► Do not install the appliance outside.

If the appliance is fitted into a cupboard or a compartment is built around the compliance after installation, then the compartment must be built from or lined with a non-combustible material.

Combustion air
In order to prevent corrosion, the combustion air must not contain any corrosive substances.
Substances classed as corrosion-promoting include halogenated hydrocarbons which contain chlorine and fluorine compounds. They may be found in solvents, paints, adhesives, aerosol propellants and household cleaners, for example.

Surface temperature
The maximum surface temperature of the appliance is below 85 °C. Therefore no special safety measures are required to protect flammable materials and fitted furniture.

Ventilation
This is a room sealed appliance and does not require any air for combustion from inside the property.
There is no need for ventilation openings to be provided in the compartment because of the low heat loss from the appliance casing, if the clearances shown are maintained (→ Section 3.8, Page 7)

6.4 Pre-installing pipes
► Position mounting plate against the wall, observing minimum side clearances of 100 mm (→ page 7).
► Mark out four holes:
 – One of holes A
 – One of holes B
 – Hole C
 – Hole D
► Drill Ø 10 mm holes.

Fig. 14 Mounting plate
► Secure mounting plate with mounting rail to the wall using the screws provided; do not tighten the two lower screws.
► Hook in pre-plumbing jig and tighten screws.
Gas and water connections

Additional adaptors are provided in the fittings kit for easy connection.

- It is very important to ensure that pipes are not secured in such a way that the fittings come under strain.

Fig. 15 Pipe connections

Fig. 16 Pipe connections

- [1] Pre-plumbing jig
- [3] Adaptor BSP 1/2" tapered thread with union nut G1/2" and olive (ZWB) to adapt to local piping connections
- [4] Pressure relief valve drain
- [5] Heating return
- [6] ZWB: Cold water connection
 - ZSB: Cylinder return
- [7] Filling loop (ZWB)
- [8] Gas connection
- [9] ZWB: DHW connection
 - ZSB: Cylinder flow
- [10] Heating flow

- The pipe for gas supply must be larger than 18 mm in diameter.
- For filling and draining the system, fit drain & fill valves at the lowest point of the system.
Pipework behind the appliance
The pipes can be routed behind the appliance in the guide on the mounting plate (→ Fig. 17).

6.5 Fitting the appliance

NOTICE: Dirt and corrosion in the pipework can damage the appliance.
- Flush out the system to remove all dirt residues.

- Remove packing, taking care to observe the instructions on the packing.
- Check the destination country on the type plate and make sure that the gas type specified on the identification plate matches that of the gas supplied by the gas utility company (→ page 8).
- Remove transit protection if available.

Removing the outer casing

- The casing is secured with two screws to prevent against unauthorised removal for electrical safety.
- Always secure the outer casing with these screws.

- Untighten the screws.
- Lift bracket and remove casing towards the front.

Fig. 17 Pipework

1. Heating flow
2. ZWB: DHW
3. ZSB: Cylinder flow
4. Gas
5. ZWB: Cold water
6. ZSB: Cylinder return
7. Heating return
8. Filling loop (ZWB)

Fig. 18
Preparing for fixing
▶ Place sealing washers on the pre-plumbing jig connections.
▶ Pull lever on pressure relief valve connection forwards and push down as far as it will go (Fig. 13).

Securing the appliance
▶ Hook appliance into the mounting rail at the top and position it at the bottom on the prepared pipework connections.
▶ Tighten the union nuts on the pipe connections.

Drain from pressure relief valve (heating circuit)
▶ Push lever on slider up until catch [1] rests on metal bracket [2] (Fig. 14).

Fig. 19

Fig. 20

WARNING: Risk of scalding
Hot water or steam can lead to scalding
▶ Stay clear of the pressure relief outlet during operation of the appliance.
Creating the condensate drain

▶ Use a plastic pipe with an outside diameter between 20 and 22 mm, to drain the condensate away from the boiler. See Chapter 5.2 for plumbing options. The pipe must fall away from the appliance at 3°.
▶ Push the plastic drain pipe 15 to 30 mm through the Pre plumbing jig.
▶ Connect the rubber siphon drain hose over the plastic drain pipe (→ Fig 21).
▶ Create the drain.
▶ Do not use copper pipe.

<table>
<thead>
<tr>
<th>CAUTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Do not modify or seal off drain pipes.</td>
</tr>
<tr>
<td>▶ Hoses must always slope downwards.</td>
</tr>
</tbody>
</table>

Fitting the filling loop (ZWB)

▶ Remove the blanking plugs [2].
▶ Place the filter [7] into the inlet side of the filling loop [4] ensuring that the filter mesh faces into the filling loop.
▶ Fit the filling loop [4] to the mains water inlet [9] and CH return [1] connections. Ensure that the filling loop is completely pushed into the stop tabs [6, 3] on both sides of the filling loop.
▶ Fit two screws and washers [8] to each of the two connections [9] and [1]. Do not try to turn the brass hexagon connectors.

CAUTION:
▶ Do not modify or seal off drain pipes.
▶ Hoses must always slope downwards.

NOTICE:
▶ Ensure there are no blockages in the pipe run.
▶ Insulate external pipework when freezing conditions can occur.
Installation

Filling the heating circuit (ZWB)

- Ensure that all system and boiler drain points are closed.
- Tighten screw [1] on the filling loop as far as it will go (Fig. 23).
- Open the cold water supply tap [3] and heating return tap [2].
- Insert key [4] in the filling direction so the arrow points to symbol
- Fully undo screw [1] on the filling loop and fill the heating circuit to a pressure of 1 - 2 bar.

Fig. 23

After filling, turn in screw [1] as far as it will go.
- Turn key [4] to position , remove and insert into the lower cover.

Fitting the lower cover

- Push the lower cover into the two guide rails at the bottom of the appliance.

Fig. 25
Connecting the flue pipe
- Push on the flue gas accessories and secure with the screws supplied.

For more precise details of connecting the flue, refer to the installation instructions for the flue routing manual.

Fig. 26 Fitting the flue kit
[1] Flue/adaptor
[2] Screws
- Check the flue gas path for tightness (chapter 13.2).

6.6 Checking the connections

Water connections
- Open the heating flow and return valves and fill the heating system.
- Check sealing points for leaks (testing pressure: max. 2.5 bar (250 kPA) at the pressure gauge).
- Open the cold water valve on the appliance and turn on a hot water tap until water runs out. Max pressure: 10 bar (1000 kPA).

Gas supply pipe
- Close the gas valve to protect the gas valve from pressure damage.
- Check sealing points for leaks.
- Release the pressure on the gas supply pipe.

7 Electrical connections

7.1 General information

• Supply: 220 - 240 V, 50 Hz.
• The appliance must be earthed.
• All pipes to the appliance must be earthed.

All appliance modulation, control and safety components are tested and ready-wired for use.

Observe safety measures according to the relevant regulations and AS/ NZS 3000.

No other electrical consumer units may be connected to the same power cable.

Fuses
The appliance is protected by three fuses. They are located on the circuit board (Fig. 4, page 10).

Replacement fuses can be found on the back of the cover (Fig. 28).

7.2 Connecting accessories

Opening the Heatronic unit

- Slide the clip down and pivot the Heatronic.

For more precise details of connecting the flue, refer to the installation instructions for the flue routing manual.
Electrical connections

▶ Remove screws, unhook cable and remove cover.

Fig. 28

▶ To provide anti-splash protection (IP) and cable grip, always cut cable grip to fit cable diameter.

Fig. 29

7.2.1 Connecting Bosch heating controls

Bosch Heating controllers such as DT 10 RF and FW 100 can be easily clipped into the front in the Heatronic 3, without the need for further wiring.

For installation and electrical connection, see the relevant installation instructions.

7.2.2 Connection of other controllers, using the switched live function

Danger of short circuit: When connecting the cables ensure that no cable pieces fall inside the control panel.

1. Unclip the cable clamp (C) (Fig. 30).
2. Cut off the tapered cable entry to fit cable diameter required (Fig. 29).
3. Turn cable retaining screw (D) anti-clockwise. Run cable over the main crossbar and through the cable clamp (C), ensuring there is ample cable to reach the connectors.
 Turn cable clamping screw (D) clockwise to secure cable and replace clamp (C) into control panel.
4. Mains power 230 V cable is pre-assembled from the factory to ST10 connector.

Fig. 30 Electrical connections

5. 230V room thermostat and/or external timer (ST10):
 ▶ Remove link,
 ▶ Connect room thermostat LIVE (L) supply to terminal (LS)
 ▶ Connect room thermostat SWITCHED LIVE (S) return to terminal (LR)
 ▶ Connect room thermostat NEUTRAL (N) to terminal (NS)

6. Optional external frost thermostat connection (ST6):
 ▶ Connect frost thermostat supply LIVE to terminal (FS)
 ▶ Connect frost thermostat SWITCHED LIVE to terminal (FR)

7.2.3 Refit control panel cover

▶ Refit panel and secure with screws (B).
▶ Bring the control panel to its upper position and secure by sliding the white plastic clip up.
7.2.4 Connecting the DHW cylinder

Replace existing cylinder temperature sensor with Bosch cylinder temperature sensor.

Cylinders with Bosch cylinder temperature sensors are connected directly to the appliance PCB.

- Snap off the plastic tongue.
- Insert the cylinder temperature sensor lead.
- Plug the connector into the PCB.

Fig. 31

7.2.5 Connecting temperature limiter TB 1 from the flow of an underfloor heating system

Only for underfloor heating systems connected directly to the appliance.

Fig. 32

If the temperature limiter trips, central heating and DHW modes are interrupted.
8 Commissioning

Fig. 33

[1] Flow temperature control
[2] DHW temperature control
[3] Chimney sweep button
[4] Service button
[5] Burner ON indicator
[6] Main switch
[8] Display
[9] Pressure gauge
[10] reset button
[12] Holiday button
[13] Drain from pressure relief valve (heating circuit)
[14] Gas tap
[15] CH return isolator
[16] Filling loop (ZWB)
[17] Cold water tap (ZWB), cylinder return (ZSB)
[18] DHW connection (ZWB), cylinder flow (ZSB)
[19] CH flow isolator
[20] Condensate hose
8.1 Before commissioning

NOTICE: Commissioning without water destroys the appliance!
- Never run the appliance without water in it.

- Adjust pre-charge pressure of expansion vessel to static head of the heating system (➔ page 18).
- Open all system radiator valves.
- Open cold water tap (➔ Fig. 33, [17]) and one DHW tap until water flows out.
- Open heating flow and return taps [19 and 15] and fill heating system to 1 to 2 bar (100 - 200 kPa) (via filling loop [16]) and close filling tap.
- Bleed radiators.
- Top up heating system to pressure of 1 - 2 bar (100 - 200 kPa).
- Check that the gas type specified on the type plate matches that of the gas supply.
- Open gas tap [14].
- Do not operate the appliance if the flue terminal fitted on the outside wall or roof is obstructed or damaged.
- Check that the pressure relief connector, located on the right hand side at the bottom of the wall frame, is in its up position.
- Check that the condensate pipe has been connected to the adaptor.
-Briefly open the pressure relief valve to test its operation.

8.2 Switching the appliance on/off

Switching on
- Switch appliance on at the main switch.
 The display shows the heating water flow temperature.

Fig. 34

When the appliance is switched on for the first time, it performs a once-only venting sequence. This involves the heating circuit pump switching on and off at intervals (for approx. 8 minutes). The display shows \(\text{ } \) in alternation with the flow temperature.

- Open automatic air vent valve [7] and close again after venting (➔ page 28).

Fig. 35

> When the burner is firing, the green indicator lamp lights up.

Switching off the appliance
- Switch appliance off at the main switch.
 The display goes out.
- If the appliance is to be switched off for a longer period of time: observe correct frost protection procedures (➔ chapter 8.9).

8.3 Starting the central heating

The maximum flow temperature can be matched to the heating system by the flow temperature controller. The current flow temperature is shown on the display.

<table>
<thead>
<tr>
<th>Setting on flow temperature controller</th>
<th>Flow temperature</th>
<th>Sample application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approx. 35 °C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Approx. 43 °C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Approx. 50 °C</td>
<td>Underfloor heating system</td>
</tr>
<tr>
<td>4</td>
<td>Approx. 60 °C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Approx. 67 °C</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Approx. 75 °C</td>
<td>Radiator heating system</td>
</tr>
<tr>
<td>max.</td>
<td>Approx. 90 °C</td>
<td>Convector heating system</td>
</tr>
</tbody>
</table>

Table 13

With underfloor heating systems, take care to observe the maximum permissible CH flow temperatures.

- Turn flow temperature controller \(\text{ } \) to adjust the maximum flow temperature.

Fig. 36

Follow the operating instructions for the heating controller used. Those instructions will tell you
- how to set the operating mode and the heating curve for weather-dependent controllers,
- how to adjust the room temperature,
- how to heat economically and save energy.
8.5 After commissioning
▶ Check the gas supply pressure (page 39).
▶ Check the condensate drain to ensure that condensate runs out. If that is not the case, switch the main switch off and on again. This activates the siphon filling program (page 36). Repeat this procedure several times until condensate starts running out.
▶ Record the settings in the commissioning report (page 53).
▶ Affix the “Heatronic settings” label to the casing in a clearly visible position (page 33).

8.6 Appliances with hot water cylinder: setting the hot water temperature

WARNING: Danger of scalding!
▶ In normal operation, do not set the temperature higher than 60 °C.
▶ Set the DHW temperature on the DHW temperature control ⬇️. The set DHW temperature flashes on the display for 30 seconds.

To prevent bacterial contamination such as legionella, we recommend setting the DHW temperature controller to at least “6” (60 °C). This setting ensures economical and convenient DHW heating.

Table 14

<table>
<thead>
<tr>
<th>DHW thermostat</th>
<th>DHW temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Approx. 5 °C (frost protection)</td>
</tr>
<tr>
<td>e</td>
<td>Approx. 55 °C</td>
</tr>
<tr>
<td>6</td>
<td>Approx. 60 °C</td>
</tr>
<tr>
<td>max.</td>
<td>Approx. 70 °C</td>
</tr>
</tbody>
</table>

eco button
Pressing and holding the eco button until it lights up switches between Comfort mode and Economy mode.

- **Comfort mode, Eco button is not lit** (default setting)
 In Comfort mode, the hot water cylinder has priority. The hot water cylinder is heated to the set temperature first. Then the appliance switches to central heating mode.

- **Economy mode, Eco button lit**
 In Economy mode, the appliance switches between central heating mode and hot water mode every ten minutes.

8.7 ZWB appliances - setting hot water temperature
▶ Set the DHW temperature on the DHW temperature control ⬇️. The set DHW temperature flashes on the display for 30 seconds.

Table 15

<table>
<thead>
<tr>
<th>DHW thermostat</th>
<th>DHW temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Approx. 40 °C</td>
</tr>
<tr>
<td>e</td>
<td>Approx. 50 °C</td>
</tr>
<tr>
<td>max.</td>
<td>Approx. 60 °C</td>
</tr>
</tbody>
</table>

eco button
Pressing and holding the eco button until it lights up switches between Comfort mode and Economy mode.

Comfort mode, (Eco button is not lit - default setting)
The appliance is held constantly at the set temperature. This means that hot water is available almost instantaneously at the tap. Consequently the appliance will switch on at intervals, even if no hot water is being drawn.

Economy mode, Eco button lit
- The water is not heated up until a hot water tap is turned on.
- With a demand signal
 Briefly turning a hot water tap on and then off signals demand so that the water is then heated up to the set temperature.

The demand signal enables gas and water savings.

Hot water supplied to sanitary fixtures
In accordance with AS 3498 a temperature control device limited to +50 °C, such as a tempering valve must be fitted when hot water is supplied to sanitary fixtures used primarily for the purposes of personal hygiene.
8.8 Summer mode (central heating off, DHW only)

▶ Note position of CH flow temperature control \(\text{max} \).
▶ Turn CH flow temperature control \(\text{max} \) anti-clockwise as far as the stop \(\text{min} \).

The heating circuit pump and consequently central heating are switched OFF. However, the DHW supply as well as the power supply to the heating programmer and timer remain ‘live’.

Additional instructions are contained in the operating instructions for the heating programmer.

8.9 Frost protection

Frost protection for the heating system:

▶ Leave appliance switched on, set CH flow temperature control \(\text{max} \) to position 1 at least.

Add anti-freeze to the heating water (\(\rightarrow \) page 18) and drain the DHW circuit.

Frost protection for the cylinder:

▶ Turn DHW temperature controller clockwise as far as it will go (5 °C).

8.10 Holiday mode

To switch on holiday mode:

▶ Press and hold holiday button \(\text{max} \) on the appliance until it lights up, and switch on holiday mode on the heating controller. In holiday mode, heating and DHW heating are switched off; frost protection remains active (\(\rightarrow \) chap. 8.9).

To switch off holiday mode:

▶ Press and hold holiday button \(\text{max} \) on the appliance until it goes out, and cancel holiday mode on the heating controller. The appliance returns to operation in standard mode according to the settings at the heating control unit.

8.11 Fault mode

All safety, modulation and control components are monitored by the Heatronic system.

If a fault occurs during operation, a warning tone sounds.

If you press a button, the warning tone stops.

The display indicates a fault and the reset button may also flash. If the reset button flashes:

▶ Press and hold the reset button until the display shows \(\text{max} \). The appliance will start up again and the flow temperature will be displayed.

If the reset button does not flash:

▶ Switch the appliance off and then on again at the main switch. The appliance will start up again and the central heating flow temperature will be displayed.

If the fault persists:

▶ Contact your authorised contractor or customer service for assistance, providing details of the fault and the appliance (\(\rightarrow \) page 5).

For an overview of faults, see page 48.
For an overview of displays, see page 47.
9 Thermal disinfection on appliances with hot water cylinder

To prevent the DHW becoming contaminated by bacteria such as legionella, we recommend you pasteurise the system after longer idle periods.

With some heating controllers, thermal disinfection can be programmed for a fixed time; see heating controller operating instructions.

Pasteurisation covers the DHW system including the draw-off points. For solar DHW cylinders, the solar portion of the cylinder is not covered.

WARNING: Risk of scalding!
Hot water can lead to severe scalding.
- Only carry out thermal disinfection at times when the system is not normally in use.
- The water in the cylinder will take a while to cool down to the set DHW temperature as a result of heat loss. Be aware that, after thermal disinfection, the hot water may be hotter than the set temperature.

- Turn off all hot water points.
- Warn occupants of risk of scalding.
- If the heating programmer has a DHW program, set the time and DHW temperature accordingly.
- If there is a circulation pump, set it to run continuously.
- Turn DHW temperature control clockwise as far as the stop (approx. 70 °C).

- Wait until the water reaches the maximum temperature.
- Draw off water in turn from the nearest to the furthest hot water point until hot water has been running out at a temperature of 70 °C for 3 minutes.
- Reset DHW temperature control, circulation pump and heating programmer to their standard settings.

10 Pump anti-seizing function

This function prevents the heating circuit pump and the 3-way valve seizing up during long periods of inactivity.

Every time the pump is switched off, a timer starts to briefly switch on the heating circuit pump and the 3-way valve at regular intervals.

11 Heatronic settings

11.1 General information

The Heatronic unit enables easy setting and testing of a large number of appliance functions.
For an overview of the service functions see chapter 11.2 on page 33.

![Fig. 43 Appliance controls](image)

<table>
<thead>
<tr>
<th>1</th>
<th>Chimney sweep button</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Service button</td>
</tr>
<tr>
<td>3</td>
<td>Display</td>
</tr>
<tr>
<td>4</td>
<td>eco button or “Up” for service functions</td>
</tr>
<tr>
<td>5</td>
<td>Holiday button or “Down” for service functions</td>
</tr>
</tbody>
</table>

Selecting service functions

The service functions are subdivided into two levels (→ tables 16 and 17 on page 33).

- Press and hold the service button until it lights up. The display shows a code such as 1.A (service level 1).
- Press eco button and holiday button simultaneously until a code such as 8.A appears (service level 2).
- Repeatedly press the holiday button or eco button until the required service function is displayed.
- Press and release the chimney sweep button. The chimney sweep button will light up and the display shows the setting for the selected service function.
Making a setting
▶ Repeatedly press the holiday button or eco button until the required service function value is displayed.
▶ Enter the value on the “Heatronic settings” label supplied and affix in a clearly visible position.

By using the “Heatronic settings” label, you will make it easier for your contractor to set modified service functions during servicing at a later date.

Saving a setting
▶ Press and hold chimney sweep button until the display shows .

The unit automatically exits the service level if no button is pressed for 15 minutes.

Exiting the service function without saving settings
▶ Briefly press the central heating boost button . The light in the central heating boost button will go out.

Restoring standard settings
To restore all values from service levels 1 and 2 to the standard settings:
▶ In service level 2, select service function 8.E and save value 00. The appliance starts with the standard setting.

11.2 Overview of service functions

11.2.1 Service level 1
▶ Press service button until it illuminates.

<table>
<thead>
<tr>
<th>Service function</th>
<th>Display code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A</td>
<td>Max. output (heating)</td>
<td>34</td>
</tr>
<tr>
<td>1.b</td>
<td>Max. output (hotwater - ZWB only)</td>
<td>34</td>
</tr>
<tr>
<td>1.C</td>
<td>Pump map (heating)</td>
<td>34</td>
</tr>
<tr>
<td>1.d</td>
<td>Map pump step (heat.)</td>
<td>35</td>
</tr>
<tr>
<td>1.E</td>
<td>Pump switch mode</td>
<td>35</td>
</tr>
<tr>
<td>2.b</td>
<td>Max. flow temperature</td>
<td>35</td>
</tr>
<tr>
<td>2.C</td>
<td>Air purge mode (burner keeps off while air purge mode is on)</td>
<td>35</td>
</tr>
<tr>
<td>2.F</td>
<td>Operating mode</td>
<td>35</td>
</tr>
<tr>
<td>3.b</td>
<td>Anti-cycle time</td>
<td>35</td>
</tr>
<tr>
<td>3.C</td>
<td>Anti-cycle flow temperature differential</td>
<td>35</td>
</tr>
<tr>
<td>3.E</td>
<td>Pre heat cycle time (hot water) (ZWB only)</td>
<td>35</td>
</tr>
<tr>
<td>3.F</td>
<td>Burner off after DHW demand (hot water) (ZWB only)</td>
<td>35</td>
</tr>
<tr>
<td>4.F</td>
<td>Syphon-fill programme</td>
<td>36</td>
</tr>
<tr>
<td>5.A</td>
<td>Reset service reminder</td>
<td>36</td>
</tr>
<tr>
<td>5.b</td>
<td>Fan run-on time</td>
<td>36</td>
</tr>
<tr>
<td>6.A</td>
<td>Last fault</td>
<td>36</td>
</tr>
<tr>
<td>6.d</td>
<td>Actual flow rate turbine (ZWB only)</td>
<td>36</td>
</tr>
<tr>
<td>6.E</td>
<td>Programmer input</td>
<td>36</td>
</tr>
<tr>
<td>7.A</td>
<td>Fault indicator LED on/off</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 16 Service functions, level 1

11.2.2 Service level 2
Access from service level 1; service button lights up.
▶ Press eco button and holiday button simultaneously until a code such as 8.A appears.

<table>
<thead>
<tr>
<th>Service function</th>
<th>Display code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.A</td>
<td>Software version</td>
<td>36</td>
</tr>
<tr>
<td>8.b</td>
<td>Code plug number</td>
<td>36</td>
</tr>
<tr>
<td>8.C</td>
<td>GFA status (not applicable)</td>
<td>36</td>
</tr>
<tr>
<td>8.d</td>
<td>GFA error (not applicable)</td>
<td>36</td>
</tr>
<tr>
<td>8.E</td>
<td>Reset all parameters</td>
<td>36</td>
</tr>
<tr>
<td>8.F</td>
<td>Permanent ignition</td>
<td>36</td>
</tr>
<tr>
<td>9.A</td>
<td>Operation mode permanent</td>
<td>36</td>
</tr>
<tr>
<td>9.b</td>
<td>Actual fan speed</td>
<td>36</td>
</tr>
<tr>
<td>9.C</td>
<td>Actual heat output</td>
<td>36</td>
</tr>
<tr>
<td>9.d</td>
<td>Start fan speed</td>
<td>36</td>
</tr>
<tr>
<td>9.E</td>
<td>Turbine signal delay (ZWB only)</td>
<td>36</td>
</tr>
<tr>
<td>9.F</td>
<td>Heating circuit pump run-on time</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 17 Service functions, level 2
11.3 Description of service functions

11.3.1 Service level 1

Service function 1.A: MAX. OUTPUT (HEATING)
Some gas supply utilities charge a basic rate based on output. The heating output can be set to any level between min. rated heat output and max. rated heat output to limit it to the specific heat requirements.

The factory setting is maximum rated heat output:

- Select service function 1.A.
- Refer to the settings tables (page 51) for the output in kW and the corresponding setting code.
- Enter the setting code.
- Measure the gas flow rate and compare with the figures for the setting shown. If they do not match, change the setting.
- Save the setting.
- Enter the selected output on the "Heatronic settings" label supplied (page 33).
- Exit service functions.

The display will show the CH flow temperature again.

Service function 1.b: Max. output (hot water - only ZWB)
The hot water output can be set to any level between minimum rated hot water output and maximum rated hot water output to limit it to the specific hot water requirements.

The factory setting is maximum rated output – display shows U0.
- Select service function 1.b.
- Take the DHW output in kW and the associated parameter from the setting tables (page 51 to 52).
- Enter the setting code.
- Measure the gas flow rate and compare with the figures for the setting shown. If they do not match, change the setting.
- Save the setting.
- Enter the selected DHW output on the "Heatronic settings" label supplied (page 33).
- Exit service functions.

The display will show the CH flow temperature again.

Service function 1.C: Pump map (heating)
The appliance is supplied with this function set to 4 (Proportional pressure high). See pump characteristics below.

The pump map indicates how the pump is controlled in heating mode. The pump switches between the various pump speeds so as to reproduce the characteristic curve selected.

Changing the pump characteristic can be helpful if a lower pressure difference will guarantee the necessary circulation on the basis of the system dimensions and pump characteristic.

The following can be selected as the pump characteristic map:

- 00 Pump step adjustable, service function 1.d (page 35)
- 01 Constant pressure high
- 02 Constant pressure medium
- 03 Constant pressure low
- 04 Proportional pressure high
- 05 Proportional pressure low

The factory setting is 04.
Service function 1.d: Map pump step (heating)
This service function corresponds to the pump speed switch used on conventional heating pumps.
However, the setting is only active if function 1.C (Pump map (heating)), is set to 0.
The factory setting is 07.

Service function 1.E: Pump switch mode
• Pump control mode 0:
The BUS controller controls the central heating circuit pump.
• Pump control mode 1:
The pump is controlled by the central heating flow temperature control.
• Pump control mode 2 (factory setting):
For heating systems with room thermostat. The central heating flow temperature controls only the gas, the pump is not affected. The room thermostat controls both the gas and the pump. The pump and fan have an over-run time of between 15 s and 3 min.
• Pump control mode 3:
Not applicable.

Service function 2.b: Maximum flow temperature
The maximum CH flow temperature can be set to between 35 °C and 88 °C. Even if the CH flow temperature control is set higher, the setting entered for 2.b (Max. flow temperature) is not exceeded.
The factory setting is 88.

Service functions 2.C: Air purge mode
The first time the appliance is switched on, a once-only venting function is activated. The heating pump then switches on and off at intervals. This sequence lasts about 8 minutes.
The 2-digit display shows a 0 in alternation with the flow temperature. The automatic vent will open during venting and then close once the venting sequence is complete.

The venting function can be activated after servicing.

If the venting function is set to “On” (with automatic deactivation), the function is set to “Off” once the sequence has been completed.

Service function 2.F: Operating mode
There are 3 operating modes to choose from.
• Normal mode: the appliance operates according to the commands received from the programmer. The display shows 0.
• Minimum mode: the appliance runs constantly at minimum output. The display shows 1. The 2-digit display alternates between the CH flow temperature and 0. After 15 min. the minimal mode changes to normal mode.
• Maximum mode: the appliance runs constantly at maximum output. The display shows 2. The 2-digit display alternates between the CH flow temperature and 0. After 15 min. the maximal mode changes to normal mode.
The factory setting is 0.

Service function 3.b: Anti-cycle time
The anti-cycle time is factory set to 3 minutes.
The shortest possible anti-cycle time is 1 minute (recommended for single-pipe and hot-air heating systems).
If the setting 0 is entered, the anti-cycle time is disabled.
▶ Enter the anti-cycle time on the commissioning record enclosed with the appliance.

Service function 3.C: Anti-cycle flow temperature differential
The switching difference is the permissible differential from the specified CH flow temperature. It can be set in increments of 1 K. The adjustment range is 0 to 30 K. The minimum CH flow temperature is 35 °C.

Note: 1 K = 1 °C.

The venting function can be activated after servicing.

Service function 3.E: Cycle time (Hot water) (ZWB only)
The appliance is supplied with the pre-heat cycle time set to 20 minutes. After pre-heating or DHW demand, this function will stipulate the period of time before the next permissible pre-heat. This will prevent excessive pre-heat cycling.

Service function 3.F: Burner off after DHW demand (Hot water - ZWB only)
The appliance is supplied with the hot water duration set to 1 minute. The “hot water duration” time specifies how long, after hot water has been drawn, that the heating mode remains disabled.
Service function 4.F: Siphon-fill programme
The syphon filling function ensures that the syphon trap is filled when the appliance is first installed or shut down for a long period. Flue gas is prevented from escaping into the room where the appliance is installed.
The trap filling function is activated when:
• the appliance is switched on at the main switch
• the burner has not been in use for at least 48 hours
• the appliance is switched from summer to winter mode
The next time the heating or hot water system calls for heat, the appliance is held at minimum output for 15 minutes.
The syphon filling programme remains active until the appliance has completed 15 minutes of operation at minimum output. The 2-digit display alternates between -] and the CH flow temperature.

DANGER: If the syphon is not filled, flue gas can escape.
▸ Only deactivate the syphon filling programme in order to carry out servicing work.
▸ Always re-activate trap filling programme once servicing is complete.

Service function 5.A: Reset service reminder
The burner service interval of 2324 hours has run out. After the service inspection store 0 for resetting the service interval.

Service function 5.b: Fan over-run time
▸ Set the time of fan over-run after a boiler demand.

Service function 6.A: Last fault
The last fault can also be recalled for servicing purposes when the appliance is functioning correctly.

Service function 6.d: Current turbine flow rate (ZWB only)
The actual flow rate of the turbine is displayed.

Service function 6.E: Programmer input
Shows the status of channel 1 of the timer DT10/20. Left digit is “Heat demand”, heating mode will be activated according to the programmer commands. Shows the status of channel 2 of the timer DT20. Right digit is “DHW demand”, hot water mode will be activated according to the programmer commands.

Service function 7.A: Fault indicator LED ON/OFF
The fault indicator LED flashes in case of error even when its setting is off (0).

11.3.2 Service level 2

Service function 8.A: Software version
The version number of the software is displayed.

Service function 8.b: Code plug
The 4-digit part number of the code plug (digits no. 7 upto 10 of order no.) is indicated.
The code plug determines the appliance functions. If the appliance is converted from natural gas to LPG or vice versa (using conversion kit) the code plug also has to be changed.

Service function 8.C: GFA status
(not applicable)

Service function 8.d: GFA error
(not applicable)
12 Converting the appliance to different gas types

The default gas setting of the appliance matches the gas type specified on the type plate.

Adjustment of the gas-air-ratio is only required when the appliance is converted to a different gas type.

The gas-air ratio must always be set on the basis of a CO₂ or O₂ reading taken at maximum rated heat output and minimum rated heat output using an electronic tester.

Adjustment to different flue systems using throttle discs or baffle plates is not necessary.

NG
- Appliances for natural gas are factory-set to Wobbe index 50 MJ/m³ and 11.3 mbar (1.13 kPa) supply pressure and sealed.

LPG
- Appliances for LPG are factory-set to Wobbe index 76.9 MJ/m³ and 27.5 mbar (2.75 kPa) supply pressure and sealed.

<table>
<thead>
<tr>
<th>LPG type</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Propane</td>
<td>recommended</td>
</tr>
<tr>
<td>Commercial Butane</td>
<td>permitted</td>
</tr>
<tr>
<td>General Product</td>
<td>permitted</td>
</tr>
<tr>
<td>Universal LPG (U-LPG)</td>
<td>permitted</td>
</tr>
</tbody>
</table>

Table 19
1) according to NZS 5435

WARNING: Flue gas poisoning
When undefined gas mixtures (General Product and Universal LPG) are used, adjustment of gas-air-ratio can lead to dangerous levels of carbon monoxide production.
- For any adjustment of the gas-air-ratio use only Commercial Propane and Commercial Butane.

Commercial Propane can be used at any outside temperature.
Commercial Butane can only be used when the outside temperature is more than +5 °C.

We do not recommend the use of General Product and U-LPG. The mixture of propane and butane in General Product and U-LPG can vary depending on the amount of fuel in the tank and the production process, which makes precise adjustment of the gas values impossible.

12.1 Gas-type conversion

The following gas type conversion sets are available:

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Conversion to</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z... 30-2 A</td>
<td>LPG</td>
<td>8 737 702 124 0</td>
</tr>
<tr>
<td></td>
<td>NG</td>
<td>8 737 702 125 0</td>
</tr>
<tr>
<td>Z... 37-2 A</td>
<td>LPG</td>
<td>8 737 702 122 0</td>
</tr>
<tr>
<td></td>
<td>NG</td>
<td>8 737 702 123 0</td>
</tr>
</tbody>
</table>

Table 20

12.2 Setting the gas-air ratio (CO₂ or O₂)

NOTICE: When running in central heating boost mode, the combi boiler will operate both the central heating and DHW circuits. This is to allow sufficient time for the setting procedure. It will be necessary to turn on a hot water tap to run water through the DHW circuit to ensure that the boiler will not cycle on low heat demands.

- Switch appliance off at the main switch.
- Remove the outer casing (→ page 21).
- Switch appliance on at the main switch.
- Remove sealing plug from flue gas testing point.
- Insert a flue gas probe approx. 135 mm into the testing point socket and seal the testing point.

Fig. 48

NOTICE: CO₂ should be measured 5 minutes after firing the appliance. To adjust the CO₂ or O₂ value it will be necessary to first operate the boiler at maximum output.

- Press and hold the central heating boost button until it lights up. The display shows the flow temperature alternating with maximum set heating output.
- Briefly press the central heating boost button . The display shows the flow temperature in alternation with maximum rated output.

Fig. 49

NOTICE: Normal operation will resume after 15 minutes or if the central heating boost button is pressed for over a second.

- To adjust the maximum CO₂ or O₂ setting, locate the gas flow throttle under the fan unit.
- Remove the gas throttle seal with a screw driver as shown in 49.
Converting the appliance to different gas types

▶ Adjust the gas flow throttle to set the CO₂ or O₂ level for maximum rated output with reference to the table 21.

![Fig. 50](image_url)

▶ Check if the CO value is less than 400 ppm dry and airfree. If this limit value is exceeded, reduce gas quantity.

![Fig. 51](image_url)

▶ Re-check settings at maximum and minimum rated output and re-adjust if necessary.
▶ Repeatedly press the central heating boost button until the light goes out.
 The display will show the CH flow temperature again.
▶ Record the CO₂ or O₂ levels in the commissioning log.
▶ Remove flue gas probe from flue gas testing point and refit sealing plug.
▶ Seal the gas valve and gas throttle.

<table>
<thead>
<tr>
<th>Gas Type</th>
<th>max. rated heat output CO₂</th>
<th>O₂</th>
<th>min. rated heat output CO₂</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG (23)</td>
<td>9.6 %</td>
<td>3.6 %</td>
<td>9.0 %</td>
<td>4.7 %</td>
</tr>
<tr>
<td>LPG (Propane)</td>
<td>10.8 %</td>
<td>4.6 %</td>
<td>10.2 %</td>
<td>5.5 %</td>
</tr>
<tr>
<td>LPG (Butane)</td>
<td>12.2 %</td>
<td>2.8 %</td>
<td>11.5 %</td>
<td>3.8 %</td>
</tr>
</tbody>
</table>

Table 21 ZSB 30 ...

1) If the CO₂ value is beyond ± 0.5 % adjust.

<table>
<thead>
<tr>
<th>Gas Type</th>
<th>max. rated heat output CO₂</th>
<th>O₂</th>
<th>min. rated heat output CO₂</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG (23)</td>
<td>9.7 %</td>
<td>3.6 %</td>
<td>9.1 %</td>
<td>4.7 %</td>
</tr>
<tr>
<td>LPG (Propane)</td>
<td>10.8 %</td>
<td>4.6 %</td>
<td>10.2 %</td>
<td>5.5 %</td>
</tr>
<tr>
<td>LPG (Butane)</td>
<td>12.2 %</td>
<td>2.8 %</td>
<td>11.5 %</td>
<td>3.8 %</td>
</tr>
</tbody>
</table>

Table 22 ZWB 37 ...

1) If the CO₂ value is beyond ± 0.5 % adjust.

▶ Appliances intended for use with LP gas (Propane or Universal) must initially be set on propane at 10.8 % (Qmax) and 10.2 % (Qmin) and at these CO₂ settings the appliance will operate satisfactorily on Universal LP gas.
 The exhaust of an appliance operating on Universal LP gas will however indicate a CO₂ concentration of up to 12.8 % but will need no adjustment.
▶ When checking an existing boiler the tolerance is ± 0.5 % CO₂.
▶ If checking after cleaning or component replacement or for adjustment when the reading obtained is outside the tolerances given above, then the tolerance is ± 0.2 % CO₂.

▶ Check if the CO value is less than 400 ppm dry and airfree. If this limit value is exceeded, reduce gas quantity.
▶ Briefly press the central heating boost button until the light goes out.
 The display shows the flow temperature in alternation with = minimum rated heat output.
▶ Measure the CO₂ or O₂ level and check if it corresponds to the minimum output figure in the table 21.
▶ If not, remove the brass cap on the gas valve, covering the adjuster.
▶ Using a 4 mm Allen key adjust for the correct setting.

> Condens 5000 W – 6 720 817 965 (2019/03)
12.3 Checking the gas supply pressure

▶ Switch off the appliance and turn off the gas cock.
▶ Undo the plug on the testing point for gas supply pressure and connect a pressure gauge.

▶ Turn on the gas tap and switch on the appliance.
▶ Press and hold the central heating boost button until it lights up.
The display shows the flow temperature alternating with \[\text{max. set output}\].
▶ Briefly press the central heating boost button .
The display shows the flow temperature in alternation with \[\text{max. rated output}\].
▶ Check required gas supply pressure according to table.
▶ Repeatedly press the central heating boost button until the light goes out.
The display will show the CH flow temperature again.
▶ Switch off the appliance, turn off the gas cock, remove the pressure gauge and refit the plug.
▶ Refit the outer casing.

13 Flue gas testing

13.1 Central heating boost button
The following appliance outputs can be selected by pressing the central heating boost button until it lights up:

• \[\text{max. heating output setting}\]
• \[\text{max. rated heat output}\]
• \[\text{min. rated heat output}\]

You have 15 minutes in which to take your measurements. Afterwards, the appliance returns to standard mode.

13.2 Checking flue system for leaks
Measuring \(O_2\) or \(CO_2\) levels in combustion air.
Use an annular-slot flue gas probe for the measurements.

With a type \(C_{13}, C_{33}\) or \(C_{93}\) flue system, the gas tightness of the flue system can be tested by measuring the \(O_2\) or \(CO_2\) content of the combustion air. The \(O_2\) level must not be below 20.6 %. The \(CO_2\) level must not exceed 0.2 %.

▶ Remove sealing plug from combustion air testing point (2, Fig. 54).
▶ Insert a flue gas probe into the testing point socket and seal the testing point.
▶ Press the central heating boost button to select \[\text{max. rated output}\].

You have 15 minutes in which to take your measurements. Afterwards, the appliance returns to standard mode.

Never commission the appliance above or below these values. Identify and eliminate the cause. Where that is impossible, shut off the gas side of the appliance and notify the gas supply utility.

Table 23

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Permissible pressure range at max. rated output ([\text{mbar/kPa}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>11 - 30/1.1-3.0</td>
</tr>
<tr>
<td>LPG (Propane)</td>
<td>25 - 45/2.5-4.5</td>
</tr>
<tr>
<td>LPG (Butane)</td>
<td>25 - 35/2.5-3.5</td>
</tr>
</tbody>
</table>

1) Standard figure for LPG with fixed cylinders with capacities up to 15 000 l

You have 15 minutes in which to take your measurements. Afterwards, the appliance returns to standard mode.

With a type \(C_{13}, C_{33}\) or \(C_{93}\) flue system, the gas tightness of the flue system can be tested by measuring the \(O_2\) or \(CO_2\) content of the combustion air. The \(O_2\) level must not be below 20.6 %. The \(CO_2\) level must not exceed 0.2 %.

▶ Remove sealing plug from combustion air testing point (2, Fig. 54).
▶ Insert a flue gas probe into the testing point socket and seal the testing point.
▶ Press the central heating boost button to select \[\text{max. rated output}\].

You have 15 minutes in which to take your measurements. Afterwards, the appliance returns to standard mode.

Never commission the appliance above or below these values. Identify and eliminate the cause. Where that is impossible, shut off the gas side of the appliance and notify the gas supply utility.

Table 23

<table>
<thead>
<tr>
<th>Gas type</th>
<th>Permissible pressure range at max. rated output ([\text{mbar/kPa}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>11 - 30/1.1-3.0</td>
</tr>
<tr>
<td>LPG (Propane)</td>
<td>25 - 45/2.5-4.5</td>
</tr>
<tr>
<td>LPG (Butane)</td>
<td>25 - 35/2.5-3.5</td>
</tr>
</tbody>
</table>

1) Standard figure for LPG with fixed cylinders with capacities up to 15 000 l
14 Environment / disposal

Environmental protection is a fundamental corporate strategy of the Bosch Group. The quality of our products, their efficiency and environmental safety are all of equal importance to us and all environmental protection legislation and regulations are strictly observed. We use the best possible technology and materials for protecting the environment taking into account of economic considerations.

Packaging

Where packaging is concerned, we participate in country-specific recycling processes that ensure optimum recycling. All of our packaging materials are environmentally compatible and can be recycled.

Used appliances

Used appliances contain valuable materials that should be recycled. The various assemblies can be easily dismantled and synthetic materials are marked accordingly. Assemblies can therefore be sorted by composition and passed on for recycling or disposal.

15 Inspection/Servicing

To ensure that gas consumption and environmental impact remain as low as possible over an extended period of time, we recommend that you take out an inspection/servicing contract with an authorised contractor covering an annual inspection, and servicing at other times as required.

DANGER: Risk of explosion!

► Turn off gas valve before working on gas-carrying components.
► Check for leaks before working on gas-carrying components.

DANGER: Risk of poisoning!

► Check for leaks before working on gas-carrying components.

DANGER: Risk of electric shock!

► Before carrying out work on electrical components, disconnect the power supply (230 V AC) (fuse, circuit breaker) and secure against unintentional reconnection.

WARNING: Risk of scalding!

Hot water can cause severe scalding
► Drain the appliance before working on components that carry water.

NOTICE: Leaking water may damage the Heatronic module.
► Cover the Heatronic module before working on any parts that carry water.

Important notes

For an overview of faults, see page 48.

- The following test equipment is required:
 - Electronic flue gas emission meter for CO₂, CO and exhaust temperature
 - Pressure gauge for 0 - 30 mbar (0 - 3 kPa) (resolution at least 0.1 mbar (0.01 kPa)
- Special tools are not required
- Permissible lubricants:
 - For components in contact with water: Unisilkon L 641 (8 709 918 413)
 - Unions: HfT 1 v 5 (8 709 918 010).
 ► Use 8 719 918 658 as heat conducting paste.
 ► Only use genuine spare parts!
 ► Refer to the spare parts catalogue when ordering spare parts.
 ► Always renew seals and O-rings removed during servicing or repair work.

After inspection/servicing

► Retighten all loosened threaded fittings.
► Recommission the appliance (page 28).
► Check all connections for leaks.
► Check the gas-air ratio and adjust if necessary (page 37).
15.1 Checklist for inspection/servicing (Inspection/Servicing report)

<table>
<thead>
<tr>
<th>Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Retrieve last fault stored on the Heatronic module, service function 6.A (→ page 42).</td>
</tr>
<tr>
<td>2</td>
<td>On Logamax plus GB042-22K appliances, check filter in cold water pipe (→ page 42).</td>
</tr>
<tr>
<td>3</td>
<td>Perform a visual check of the air/flue gas routing.</td>
</tr>
<tr>
<td>4</td>
<td>Check the gas supply pressure, (→ page 39). mbar (kPa)</td>
</tr>
<tr>
<td>5</td>
<td>Check the gas-air ratio at min./max. and adjust if necessary (→ page 37). min. % max. %</td>
</tr>
<tr>
<td>6</td>
<td>Check for leaks on the gas and water connections (→ page 25).</td>
</tr>
<tr>
<td>7</td>
<td>Check heat exchanger, (→ page 44).</td>
</tr>
<tr>
<td>8</td>
<td>Check burner (→ page 45).</td>
</tr>
<tr>
<td>9</td>
<td>Check electrodes (→ page 42).</td>
</tr>
<tr>
<td>10</td>
<td>Check diaphragm in mixer unit (→ page 46).</td>
</tr>
<tr>
<td>11</td>
<td>Clean condensate trap (→ page 46).</td>
</tr>
<tr>
<td>12</td>
<td>Check the expansion vessel pre-charge pressure matches the static head of the heating system. bar (kPa)</td>
</tr>
<tr>
<td>13</td>
<td>Check the heating system pressure. bar (kPa)</td>
</tr>
<tr>
<td>14</td>
<td>Check electrical wiring for damage.</td>
</tr>
<tr>
<td>15</td>
<td>Check the heating controller settings.</td>
</tr>
<tr>
<td>16</td>
<td>Check the selected service functions in accordance with the “Heatronic settings” label (→ Fig. 37, page 30)</td>
</tr>
</tbody>
</table>

Table 24
15.2 Description of various servicing operations

15.2.1 Retrieving last fault stored (service function 6.A)
 ▶ Select service function 6.A (→ page 32).

For an overview of faults, see page 48.

15.2.2 Checking electrodes
 ▶ Remove electrode set (→ page 8) and gasket.
 Check electrodes for dirt; clean or replace if required.
 ▶ Refit electrode set and check for tightness (56).

15.2.3 Strainer in cold water pipe (ZWB)
 ▶ Undo cold water pipe and check filter for dirt.

Fig. 57

15.2.4 Plate type heat exchanger (ZWB)
If the DHW output is insufficient:
 ▶ Check strainer in cold water pipe for dirt (→ page 42).
 ▶ Remove plate-type heat exchanger and replace
 -or-
 ▶ Descale only with a product that has been approved for stainless steel (1.4401).
Remove the plate heat exchanger:
 ▶ Disconnect electrical connectors.
 ▶ Remove hose from pressure relief valve.

Fig. 58
- Undo/remove pipe unions.

Fig. 59
- Release the quick-acting closures and remove the hydraulic assembly completely.

Fig. 60
- Undo the plate-type heat exchanger.

Fig. 61
- Fit new plate-type heat exchanger with new gaskets and reconnect the hydraulic assembly in reverse order.
- Check all connections for leaks.
15.2.5 Heat exchanger

For cleaning the heat exchanger, use brush, accessory no. 1060, and cleaning blade, accessory no. 1061.

- Check control pressure at maximum rated output at mixer unit.

- With the cleaning blade, clean the heat exchanger from the bottom to the top.

Fig. 64

With cleaning required:

- Remove the heat exchanger access panel (page 8) and any panel behind, if installed.

- Remove burner (chapter 15.2.6 “Checking the burner”) and flush the heat exchanger with water from above.

Fig. 66
Cleaning the condensate tray (with reversed brush) and the siphon connection.

Close the heat exchanger access panel using a new gasket and tighten the screws to approx. 5 Nm.

15.2.6 Burner

- Remove two screws [2] from top cover [1] and lift off cover (Fig. 68).

- Remove clips [3], nuts [4] and [5] and two screws [7] (Fig. 68).

- Remove burner cover [6].

- Remove burner and clean its components.

- Refit burner, possibly with a new gasket, in reverse order.

- Adjust the gas-air ratio (page 37).
15.2.7 Diaphragm in mixer unit

CAUTION: Ensure that the diaphragm is not damaged during its release and refitting!

- Open the mixing chamber.
- Carefully withdraw diaphragm from fan intake tube and check for soiling and splits.
- Carefully refit the diaphragm into the fan connector, in the correct position.
- The diaphragm flaps must open upwards.
- Close the mixing chamber.

15.2.8 Cleaning condensate trap

- Remove condensate trap and check that the heat exchanger connection is clear.
- Remove and clean the condensate siphon sump.
- Check condensate hose and clean if necessary.
- Fill condensation trap with approx. 1/4 l of water and refit.

15.2.9 Checking the expansion vessel (see also page 18)

The expansion vessel should be checked annually.

- Depressurise the appliance.
- If necessary, adjust charge pre-charge pressure of expansion vessel to the static head of the heating system.

15.2.10 Setting the heating system pressure

- If the gauge is below 1 bar (100 kPa) (when the system is cold), top up the system water between 1 and 2 bar (100 kPa and 200 kPa).
- If there is a pressure drop: check the expansion vessel and heating system for leaks.

15.2.11 Checking electrical wiring

- Check electrical wiring for physical damage and replace faulty leads.

Pressure gauge reading

<table>
<thead>
<tr>
<th>Reading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bar</td>
<td>Minimum system pressure (when cold)</td>
</tr>
<tr>
<td>1 - 2 bar</td>
<td>Optimum system pressure</td>
</tr>
<tr>
<td>3 bar</td>
<td>Maximum system pressure at highest heating water temperature: must not be exceeded otherwise pressure relief valve opens.</td>
</tr>
</tbody>
</table>

Table 26

- If the gauge is below 1 bar (100 kPa) (when the system is cold), top up the system water between 1 and 2 bar (100 kPa and 200 kPa).
- If there is a pressure drop: check the expansion vessel and heating system for leaks.
Displays

The display shows the following (table 27 and 28):

<table>
<thead>
<tr>
<th>Value displayed</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number or letter, dot followed by letter</td>
<td>Service function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(table 16/ 17, page 33)</td>
<td></td>
</tr>
<tr>
<td>Letter followed by number or letter</td>
<td>Fault code flashes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(table 29, page 48)</td>
<td></td>
</tr>
<tr>
<td>Two numbers</td>
<td>Decimal figure, e.g. flow temperature</td>
<td>00..99</td>
</tr>
<tr>
<td>U followed by 0..9</td>
<td>Decimal figure; 100..109 is displayed as U0..U9</td>
<td>0..109</td>
</tr>
<tr>
<td>One number (displayed for longer)</td>
<td>Decimal figure (three digits); first digit is</td>
<td>0..999</td>
</tr>
<tr>
<td>followed twice by two numbers</td>
<td>shown alternating with the two last digits</td>
<td></td>
</tr>
<tr>
<td>(displayed briefly)</td>
<td>(e.g. 1...69..69 for 169)</td>
<td></td>
</tr>
<tr>
<td>Two dashes followed by two pairs of</td>
<td>Boiler coding card number; value is shown in</td>
<td>9999</td>
</tr>
<tr>
<td>numbers</td>
<td>three stages: 1. Two dashes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. First two numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Last two numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e.g.: -- ..10..04)</td>
<td></td>
</tr>
<tr>
<td>Two letters followed by two pairs of</td>
<td>Version number; value is shown in three stages:</td>
<td></td>
</tr>
<tr>
<td>numbers</td>
<td>1. First two letters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. First two numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Last two numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e.g.: CF 10 20)</td>
<td></td>
</tr>
</tbody>
</table>

| Table 27 Displays | | |

<table>
<thead>
<tr>
<th>Special display</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledge by pressing any key (except reset).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledge by pressing two keys simultaneously</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acknowledge by pressing [] and holding for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 3 seconds (Save function).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display alternately shows the flow temperature and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The appliance operates for 15 minutes at the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>minimum rated output.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display shows the flow temperature alternating with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The appliance works with the set maximum rated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output in heating mode, (\rightarrow) service function 1.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display alternately shows the flow temperature and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The appliance operates for 15 minutes at the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>maximum rated output.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventilation function is enabled, see service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>function 2.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display shows the flow temperature alternating with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The trap filling program is enabled, (\rightarrow) service function 4.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display shows the flow temperature alternating with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the set inspection interval has elapsed, (\rightarrow) service function 5.A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display alternately shows the flow temperature and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The heating circuit pump is blocked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The display shows the flow temperature alternating with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The temperature gradient limiter is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive flow temperature increase: heating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mode is suspended for two minutes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screed drying function of the weather-compensated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>controller ((\rightarrow) operating instructions) or building drying function ((\rightarrow) service function 7.E) operational.</td>
<td></td>
</tr>
</tbody>
</table>

| Table 28 Special displays | | |
17 Fault mode

17.1 Troubleshooting

DANGER: Risk of explosion!
- Turn off gas valve before working on gas-carrying components.
- Check for leaks before working on gas-carrying components.

DANGER: Risk of poisoning!
- Check for leaks before working on gas-carrying components.

DANGER: Risk of electric shock!
- Before carrying out work on electrical components, disconnect the power supply (230 V AC) (fuse, circuit breaker) and secure against unintentional reconnection.

WARNING: Risk of scalding!
- Hot water can cause severe scalding
- Drain the appliance before working on components that carry water.

If you press a button, the warning tone stops.

The display indicates a fault (e.g. [Err]) and the reset-button may also flash.

If the reset button flashes:
- Press and hold the reset button until the display shows [].
 The appliance will start up again and the flow temperature will be displayed.

If the reset button does not flash:
- Switch the appliance off and then on again at the main switch.
 The appliance will start up again and the central heating flow temperature will be displayed.

All safety, modulation and control components are monitored by the Heatronic system.
If a fault occurs during operation, a warning tone sounds.

If a fault persists:
- Check PCB, replace if required and set service functions as per "Heatronic settings" label (→ Fig. 37, page 30).

17.2 Faults that are shown on the display

<table>
<thead>
<tr>
<th>Display code</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| A7 | Temperature sensor for hot water is faulty. (ZWB) | ▶ Check temperature sensor and lead for breaks or short circuits, and replace if required.
▶ Plug in boiler coding card correctly; replace if required. |
| A8 | Communication fault. | ▶ Check BUS device connecting lead.
▶ Check controller, replace if required. |
| Ad | Cylinder temperature sensor not detected.
The cylinder temperature sensor was recognised as a BUS subscriber and then reconnected to the appropriate terminal. | ▶ Check cylinder temperature sensor and connecting lead.
▶ Resetting the Heatronic 3 to its standard settings (service function 8.E, page 36), resetting the IPM 1 or IPM 2 to its standard settings and carrying out the automatic system configuration on the heating controller. |
| b1 | Code plug not detected. | ▶ Plug in boiler coding card correctly; replace if required. |
| C6 | Fan not running. | ▶ Check fan lead and connector, check fan, replace as necessary. |
| CC | Outside temperature sensor not detected. | ▶ Check outside temperature sensor and connecting lead for breaks.
▶ Correctly connect outside temperature sensor to terminals A and F. |
| d3 | External temperature limiter faulty.
External limiter has tripped.
Temperature limiter locked out. | ▶ Check temperature limiter and lead for breaks or short circuits, and replace if required.
▶ Temperature limiter has tripped. Jumper across 8-9 or PR-P0 is missing.
▶ Reset the temperature limiter. |

For an overview of faults, see page 48.
For an overview of displays, see page 47.

If a fault persists:
- Check PCB, replace if required and set service functions as per "Heatronic settings" label (→ Fig. 37, page 30).

NOTICE: Leaking water may damage the Heatronic module.
- Cover the Heatronic module before working on any parts that carry water.

DANGER: Risk of explosion!
- Turn off gas valve before working on gas-carrying components.
- Check for leaks before working on gas-carrying components.

DANGER: Risk of poisoning!
- Check for leaks before working on gas-carrying components.

DANGER: Risk of electric shock!
- Before carrying out work on electrical components, disconnect the power supply (230 V AC) (fuse, circuit breaker) and secure against unintentional reconnection.

WARNING: Risk of scalding!
- Hot water can cause severe scalding
- Drain the appliance before working on components that carry water.

For an overview of faults, see page 48.
For an overview of displays, see page 47.

<table>
<thead>
<tr>
<th>Display code</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| A7 | Temperature sensor for hot water is faulty. (ZWB) | ▶ Check temperature sensor and lead for breaks or short circuits, and replace if required.
▶ Plug in boiler coding card correctly; replace if required. |
| A8 | Communication fault. | ▶ Check BUS device connecting lead.
▶ Check controller, replace if required. |
| Ad | Cylinder temperature sensor not detected.
The cylinder temperature sensor was recognised as a BUS subscriber and then reconnected to the appropriate terminal. | ▶ Check cylinder temperature sensor and connecting lead.
▶ Resetting the Heatronic 3 to its standard settings (service function 8.E, page 36), resetting the IPM 1 or IPM 2 to its standard settings and carrying out the automatic system configuration on the heating controller. |
| b1 | Code plug not detected. | ▶ Plug in boiler coding card correctly; replace if required. |
| C6 | Fan not running. | ▶ Check fan lead and connector, check fan, replace as necessary. |
| CC | Outside temperature sensor not detected. | ▶ Check outside temperature sensor and connecting lead for breaks.
▶ Correctly connect outside temperature sensor to terminals A and F. |
| d3 | External temperature limiter faulty.
External limiter has tripped.
Temperature limiter locked out. | ▶ Check temperature limiter and lead for breaks or short circuits, and replace if required.
▶ Temperature limiter has tripped. Jumper across 8-9 or PR-P0 is missing.
▶ Reset the temperature limiter. |

Table 29 Faults shown on the display
Table 29 Faults shown on the display

<table>
<thead>
<tr>
<th>Display code</th>
<th>Description</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| **d5** | External flow temperature sensor defective (flow equaliser). The external flow temperature sensor was recognised as a BUS subscriber and then reconnected to the appropriate terminal. | ▶ Check temperature sensor and lead for breaks or short circuits, and replace if required.
▶ Check whether only one temperature sensor is connected; otherwise remove second temperature sensor.
▶ Resetting the Heatronic 3 to its standard settings (→ Service function 8.E: Reset all parameters), resetting the IPM 1 or IPM2 to its standard settings and carrying out the automatic system configuration on the heating controller. |
| **E2** | Temperature sensor in CH flow faulty. | ▶ Check temperature sensor and lead for breaks or short circuits, and replace if required. |
| **E9** | Heat exchanger temperature limiter or flue gas temperature limiter has tripped. | ▶ Check heat exchanger temperature limiter and lead for breaks or short circuits; replace if required.
▶ Check flue gas temperature limiter and lead for breaks or short circuits; replace if required.
▶ Check the operating pressure of the heating system.
▶ Check temperature limiter; replace if required.
▶ Check pump starter; replace pump if required.
▶ Check PCB fuse; replace if required.
▶ Vent appliance.
▶ Check heat exchanger on the water side; replace if required.
▶ On appliances with displacement bodies in heat exchanger, check whether displacement bodies are fitted. |
| **EA** | Flame not detected. | ▶ Check earth lead is correctly connected.
▶ Check whether gas valve is open.
▶ Check gas supply pressure; correct if required.
▶ Check power supply.
▶ Check electrodes with lead; replace if required.
▶ Check flue gas system; clean or repair if required.
▶ Check gas/air ratio; correct if required.
▶ For natural gas: Check external gas flow limiter; replace if required.
▶ For open flue operation, check air supply or ventilation apertures.
▶ Clean out condensation trap discharge pipe.
▶ Remove diaphragm from fan inlet connection and check for contamination or tears.
▶ Clean heat exchanger.
▶ Check gas valve; replace if required.
▶ Plug in boiler coding card correctly; replace PCB if required.
▶ Two-phase network (IT): 2 M Ω - insert resistance between PE and N at PCB power supply. |
| **F0** | Internal fault. | ▶ Press reset for 3 seconds and release. When the button is released, the appliance will restart.
▶ Check electrical plug-in contacts and ignition leads; replace PCB if required.
▶ Check gas/air ratio; correct if required. |
| **F1** | Internal data error. | ▶ Restore Heatronic 3 to standard settings (→ service function 8.E). |
| **F7** | A flame is detected although the appliance is switched off. | ▶ Check electrodes; replace if required.
▶ Check flue gas system; clean or repair if required.
▶ Check PCB for moisture; dry if required. |
| **FA** | A flame is detected after the gas has been switched off. | ▶ Check gas valve; replace if required.
▶ Clean condensate trap.
▶ Check electrodes and lead; replace if required.
▶ Check flue gas system; clean or repair if required. |
| **Fd** | Reset was pressed in error. | ▶ Press reset again.
▶ Check cable harness to high limit safety cut-out and gas valve for earth connection. |
17.3 Faults that are not shown on the display

<table>
<thead>
<tr>
<th>Appliance faults</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Combustion noise too loud; rumbling noises | ▶ Plug in boiler coding card correctly; replace if required.
▶ Check gas type.
▶ Check gas supply pressure; adjust if required.
▶ Check flue gas system; clean or repair if required.
▶ Check gas/air ratio in the combustion air and flue gas; replace gas valve if required. |
| Flow noises | ▶ Set pump stages or pump characteristic maps correctly and match to maximum output.
▶ Set pump mode correctly. |
| Heat-up takes too long | ▶ Set pump stages or pump characteristic maps correctly and match to maximum output.
▶ Set pump mode correctly. |
| Flue gas readings incorrect; CO levels too high | ▶ Check gas type.
▶ Check gas supply pressure; adjust if required.
▶ Check flue gas system; clean or repair if required.
▶ Check gas/air ratio in flue gas; replace gas valve if required. |
| Ignition too harsh, poor | ▶ Check gas type.
▶ Check gas supply pressure; adjust if required.
▶ Check power supply.
▶ Check electrodes with lead; replace if required.
▶ Check flue gas system; clean or repair if required.
▶ Check gas/air ratio; replace gas valve if required.
▶ For natural gas: Check external gas flow limiter; replace if required.
▶ Check burner; replace if required. |
| Set flow temperature (e.g. of the FW-100 controller) exceeded | ▶ Switch OFF automatic cycle block, i.e. set value to 0.
▶ Set the required cycle block, e.g. standard setting of 3 minutes. |
| Condensate in air box | ▶ Insert diaphragm in the mixing facility as per installation instructions; replace if required. |
| DHW temperature is not reached (ZWB) | ▶ Plug in boiler coding card correctly; replace if required.
▶ Check turbine; replace if required. |
| Heatronic is flashing (i.e. all keys, all display segments, burner indicator etc. are flashing) | ▶ Replace fuse Si 3 (24 V). |
| Set room temperature not reached | ▶ De-areate the hydronic system.
▶ Check the thermostatic radiator valves
▶ Check the demand from the controller
▶ Complete air purge (service function 2.C). |

Table 30 Faults not shown on the display
17.4 Sensor values

17.4.1 Outside temperature sensor (for weather-compensated controllers, accessory)

<table>
<thead>
<tr>
<th>Outside temperature / °C</th>
<th>Resistance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>2 392</td>
</tr>
<tr>
<td>-16</td>
<td>2 088</td>
</tr>
<tr>
<td>-12</td>
<td>1 811</td>
</tr>
<tr>
<td>-8</td>
<td>1 562</td>
</tr>
<tr>
<td>-4</td>
<td>1 342</td>
</tr>
<tr>
<td>0</td>
<td>1 149</td>
</tr>
<tr>
<td>4</td>
<td>984</td>
</tr>
<tr>
<td>8</td>
<td>842</td>
</tr>
<tr>
<td>10</td>
<td>781</td>
</tr>
<tr>
<td>15</td>
<td>642</td>
</tr>
<tr>
<td>20</td>
<td>528</td>
</tr>
<tr>
<td>25</td>
<td>436</td>
</tr>
</tbody>
</table>

Table 31

17.4.2 Flow and DHW sensors

<table>
<thead>
<tr>
<th>Temperature / °C</th>
<th>Resistance (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>14 772</td>
</tr>
<tr>
<td>25</td>
<td>11 981</td>
</tr>
<tr>
<td>30</td>
<td>9 786</td>
</tr>
<tr>
<td>35</td>
<td>8 047</td>
</tr>
<tr>
<td>40</td>
<td>6 653</td>
</tr>
<tr>
<td>45</td>
<td>5 523</td>
</tr>
<tr>
<td>50</td>
<td>4 608</td>
</tr>
<tr>
<td>55</td>
<td>3 856</td>
</tr>
<tr>
<td>60</td>
<td>3 243</td>
</tr>
<tr>
<td>65</td>
<td>2 744</td>
</tr>
<tr>
<td>70</td>
<td>2 332</td>
</tr>
<tr>
<td>75</td>
<td>1 990</td>
</tr>
<tr>
<td>80</td>
<td>1 704</td>
</tr>
<tr>
<td>85</td>
<td>1 464</td>
</tr>
<tr>
<td>90</td>
<td>1 262</td>
</tr>
<tr>
<td>95</td>
<td>1 093</td>
</tr>
<tr>
<td>100</td>
<td>950</td>
</tr>
</tbody>
</table>

Table 32

17.5 Settings for heating output with ZSB 30 ...23

<table>
<thead>
<tr>
<th>NG</th>
<th>Gross calorific value (MJ/m³) (15 °C): 37.8</th>
<th>Net calorific value (MJ/m³) (15 °C): 34.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Heat output (kW)</td>
<td>Gas consumption (MJ/h)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>32</td>
<td>7.7</td>
<td>31.9</td>
</tr>
<tr>
<td>33</td>
<td>8.0</td>
<td>33.2</td>
</tr>
<tr>
<td>36</td>
<td>9.0</td>
<td>37.3</td>
</tr>
<tr>
<td>39</td>
<td>10.0</td>
<td>41.4</td>
</tr>
<tr>
<td>42</td>
<td>11.0</td>
<td>45.5</td>
</tr>
<tr>
<td>45</td>
<td>12.0</td>
<td>49.6</td>
</tr>
<tr>
<td>48</td>
<td>13.0</td>
<td>53.7</td>
</tr>
<tr>
<td>51</td>
<td>14.0</td>
<td>57.8</td>
</tr>
<tr>
<td>54</td>
<td>15.0</td>
<td>61.9</td>
</tr>
<tr>
<td>57</td>
<td>16.0</td>
<td>66.0</td>
</tr>
<tr>
<td>60</td>
<td>17.0</td>
<td>70.1</td>
</tr>
<tr>
<td>63</td>
<td>18.0</td>
<td>74.2</td>
</tr>
<tr>
<td>66</td>
<td>19.0</td>
<td>78.3</td>
</tr>
<tr>
<td>69</td>
<td>20.0</td>
<td>82.4</td>
</tr>
<tr>
<td>73</td>
<td>21.0</td>
<td>86.5</td>
</tr>
<tr>
<td>76</td>
<td>22.0</td>
<td>90.6</td>
</tr>
<tr>
<td>79</td>
<td>23.0</td>
<td>94.7</td>
</tr>
<tr>
<td>82</td>
<td>24.0</td>
<td>98.8</td>
</tr>
<tr>
<td>85</td>
<td>25.0</td>
<td>102.9</td>
</tr>
<tr>
<td>88</td>
<td>26.0</td>
<td>107.0</td>
</tr>
<tr>
<td>91</td>
<td>27.0</td>
<td>111.1</td>
</tr>
<tr>
<td>94</td>
<td>28.0</td>
<td>115.2</td>
</tr>
<tr>
<td>97</td>
<td>29.0</td>
<td>119.3</td>
</tr>
<tr>
<td>U0 (100)</td>
<td>30.0</td>
<td>123.4</td>
</tr>
</tbody>
</table>

Table 33

1) Gas flow rate (l/min at \(t_{W}/t_{G} = 80/60 °C \)
17.6 Settings for heating output with ZSB 30 ...31

<table>
<thead>
<tr>
<th>Display</th>
<th>Heat output (kW)</th>
<th>Gas consumption (MJ/h)</th>
<th>Heat output (kW)</th>
<th>Gas consumption (MJ/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>11.0</td>
<td>45.9</td>
<td>12.5</td>
<td>52.2</td>
</tr>
<tr>
<td>46</td>
<td>12.0</td>
<td>50.0</td>
<td>13.6</td>
<td>56.8</td>
</tr>
<tr>
<td>49</td>
<td>13.0</td>
<td>54.1</td>
<td>14.8</td>
<td>61.5</td>
</tr>
<tr>
<td>52</td>
<td>14.0</td>
<td>58.1</td>
<td>15.9</td>
<td>66.1</td>
</tr>
<tr>
<td>55</td>
<td>15.0</td>
<td>62.2</td>
<td>17.0</td>
<td>70.7</td>
</tr>
<tr>
<td>58</td>
<td>16.0</td>
<td>66.3</td>
<td>18.2</td>
<td>75.4</td>
</tr>
<tr>
<td>61</td>
<td>17.0</td>
<td>70.4</td>
<td>19.3</td>
<td>80.0</td>
</tr>
<tr>
<td>64</td>
<td>18.0</td>
<td>74.5</td>
<td>20.5</td>
<td>84.6</td>
</tr>
<tr>
<td>67</td>
<td>19.0</td>
<td>78.5</td>
<td>21.6</td>
<td>89.3</td>
</tr>
<tr>
<td>70</td>
<td>20.0</td>
<td>82.6</td>
<td>22.7</td>
<td>93.9</td>
</tr>
<tr>
<td>73</td>
<td>21.0</td>
<td>86.7</td>
<td>23.9</td>
<td>98.5</td>
</tr>
<tr>
<td>76</td>
<td>22.0</td>
<td>90.8</td>
<td>25.0</td>
<td>103.2</td>
</tr>
<tr>
<td>79</td>
<td>23.0</td>
<td>94.8</td>
<td>26.1</td>
<td>107.8</td>
</tr>
<tr>
<td>82</td>
<td>24.0</td>
<td>98.9</td>
<td>27.3</td>
<td>112.4</td>
</tr>
<tr>
<td>85</td>
<td>25.0</td>
<td>103.0</td>
<td>28.4</td>
<td>117.1</td>
</tr>
<tr>
<td>88</td>
<td>26.0</td>
<td>107.1</td>
<td>29.5</td>
<td>121.7</td>
</tr>
<tr>
<td>91</td>
<td>27.0</td>
<td>111.1</td>
<td>30.7</td>
<td>126.3</td>
</tr>
<tr>
<td>94</td>
<td>28.0</td>
<td>115.2</td>
<td>31.8</td>
<td>131.0</td>
</tr>
<tr>
<td>97</td>
<td>29.0</td>
<td>119.3</td>
<td>33.0</td>
<td>135.6</td>
</tr>
<tr>
<td>U0 (100)</td>
<td>30.0</td>
<td>123.4</td>
<td>34.1</td>
<td>140.2</td>
</tr>
</tbody>
</table>

Table 34

17.7 Settings for heating output with ZWB 37 ...23

NG
- Gross calorific value (MJ/m³) (15 °C): 37.8
- Net calorific value (MJ/m³) (15 °C): 34.0

<table>
<thead>
<tr>
<th>Display</th>
<th>Heat output (kW)</th>
<th>Gas consumption (MJ/h)</th>
<th>Gas flow rate 1) (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>9.4</td>
<td>31.9</td>
<td>17</td>
</tr>
<tr>
<td>34</td>
<td>10.0</td>
<td>41.6</td>
<td>18</td>
</tr>
<tr>
<td>36</td>
<td>11.0</td>
<td>45.7</td>
<td>20</td>
</tr>
<tr>
<td>39</td>
<td>12.0</td>
<td>49.8</td>
<td>22</td>
</tr>
<tr>
<td>41</td>
<td>13.0</td>
<td>53.9</td>
<td>24</td>
</tr>
<tr>
<td>44</td>
<td>14.0</td>
<td>57.9</td>
<td>26</td>
</tr>
<tr>
<td>46</td>
<td>15.0</td>
<td>62.0</td>
<td>27</td>
</tr>
<tr>
<td>49</td>
<td>16.0</td>
<td>66.1</td>
<td>29</td>
</tr>
<tr>
<td>51</td>
<td>17.0</td>
<td>70.2</td>
<td>31</td>
</tr>
<tr>
<td>54</td>
<td>18.0</td>
<td>74.3</td>
<td>33</td>
</tr>
<tr>
<td>56</td>
<td>19.0</td>
<td>78.4</td>
<td>35</td>
</tr>
<tr>
<td>59</td>
<td>20.0</td>
<td>82.5</td>
<td>36</td>
</tr>
<tr>
<td>61</td>
<td>21.0</td>
<td>86.6</td>
<td>38</td>
</tr>
<tr>
<td>64</td>
<td>22.0</td>
<td>90.7</td>
<td>40</td>
</tr>
<tr>
<td>66</td>
<td>23.0</td>
<td>94.7</td>
<td>42</td>
</tr>
<tr>
<td>69</td>
<td>24.0</td>
<td>98.8</td>
<td>44</td>
</tr>
<tr>
<td>71</td>
<td>25.0</td>
<td>102.9</td>
<td>45</td>
</tr>
<tr>
<td>74</td>
<td>26.0</td>
<td>107.0</td>
<td>47</td>
</tr>
<tr>
<td>76</td>
<td>27.0</td>
<td>111.1</td>
<td>49</td>
</tr>
<tr>
<td>79</td>
<td>28.0</td>
<td>115.2</td>
<td>51</td>
</tr>
<tr>
<td>81</td>
<td>29.0</td>
<td>119.3</td>
<td>53</td>
</tr>
<tr>
<td>84</td>
<td>30.0</td>
<td>123.4</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 35

1) Gas flow rate (l/min at t_V/t_R = 80/60 °C

Butane

<table>
<thead>
<tr>
<th>Display</th>
<th>Heat output (kW)</th>
<th>Gas consumption (MJ/h)</th>
<th>Heat output (kW)</th>
<th>Gas consumption (MJ/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>13.9</td>
<td>57.9</td>
<td>15.8</td>
<td>65.8</td>
</tr>
<tr>
<td>45</td>
<td>14.0</td>
<td>58.3</td>
<td>15.9</td>
<td>66.3</td>
</tr>
<tr>
<td>47</td>
<td>15.0</td>
<td>62.4</td>
<td>17.0</td>
<td>70.9</td>
</tr>
<tr>
<td>50</td>
<td>16.0</td>
<td>66.4</td>
<td>18.2</td>
<td>75.5</td>
</tr>
<tr>
<td>52</td>
<td>17.0</td>
<td>70.5</td>
<td>19.3</td>
<td>80.1</td>
</tr>
<tr>
<td>55</td>
<td>18.0</td>
<td>74.6</td>
<td>20.5</td>
<td>84.7</td>
</tr>
<tr>
<td>57</td>
<td>19.0</td>
<td>78.6</td>
<td>21.6</td>
<td>89.4</td>
</tr>
<tr>
<td>60</td>
<td>20.0</td>
<td>82.7</td>
<td>22.7</td>
<td>94.0</td>
</tr>
<tr>
<td>62</td>
<td>21.0</td>
<td>86.8</td>
<td>23.9</td>
<td>98.6</td>
</tr>
<tr>
<td>65</td>
<td>22.0</td>
<td>90.8</td>
<td>25.0</td>
<td>103.2</td>
</tr>
<tr>
<td>67</td>
<td>23.0</td>
<td>94.9</td>
<td>26.1</td>
<td>107.9</td>
</tr>
<tr>
<td>70</td>
<td>24.0</td>
<td>99.0</td>
<td>27.3</td>
<td>112.5</td>
</tr>
<tr>
<td>72</td>
<td>25.0</td>
<td>103.0</td>
<td>28.4</td>
<td>117.1</td>
</tr>
<tr>
<td>75</td>
<td>26.0</td>
<td>107.1</td>
<td>29.5</td>
<td>121.7</td>
</tr>
<tr>
<td>77</td>
<td>27.0</td>
<td>111.2</td>
<td>30.7</td>
<td>126.3</td>
</tr>
<tr>
<td>80</td>
<td>28.0</td>
<td>115.2</td>
<td>31.8</td>
<td>131.0</td>
</tr>
<tr>
<td>82</td>
<td>29.0</td>
<td>119.3</td>
<td>33.0</td>
<td>135.6</td>
</tr>
<tr>
<td>85</td>
<td>30.0</td>
<td>123.4</td>
<td>34.1</td>
<td>140.2</td>
</tr>
</tbody>
</table>

Table 36
Commissioning report for the appliance

<table>
<thead>
<tr>
<th>Customer/system user:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surname, first name</td>
<td>Street, house number</td>
</tr>
<tr>
<td>Telephone/fax</td>
<td>Postcode, town</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System installer:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Order number:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Appliance type:</th>
<th>(Complete a separate report for every appliance!)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Serial number:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date commissioned:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[] Individual appliance</th>
<th>[] Cascade, number of appliances:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Installation room:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ventilation apertures: Number:</th>
<th>size: approx. cm²</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flue routing:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[] Twin pipe system</th>
<th>[] LAS</th>
<th>[] Duct</th>
<th>[] Separate pipe routing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[] Plastic</th>
<th>[] Aluminium</th>
<th>[] Stainless steel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total length: approx. m</th>
<th>90° bend: pce</th>
<th>15 - 45° bend: pce</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flue tightness test (with combustion air flowing in countercurrent):</th>
<th>[] yes</th>
<th>[] no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CO₂ value in the combustion air at maximum rated output:</th>
<th>%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>O₂ value in the combustion air at maximum rated output:</th>
<th>%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes regarding underpressure or overpressure operation:</th>
<th></th>
</tr>
</thead>
</table>

Gas setting and flue gas test:

<table>
<thead>
<tr>
<th>Selected gas type:</th>
<th>[] Natural gas</th>
<th>[] Propane</th>
<th>[] Butane</th>
<th>[] U-LPG</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gas supply pressure:</th>
<th>kPa</th>
<th>Gas static supply pressure:</th>
<th>mbar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Selected maximum rated output:</th>
<th>kW</th>
<th>Selected minimum rated output:</th>
<th>kW</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gas flow rate at maximum rated output:</th>
<th>ltr/min</th>
<th>Gas flow rate at minimum rated output:</th>
<th>ltr/min</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Net calorific value Hₘₜₜ:</th>
<th>kWh/m³</th>
<th>CO₂ at minimum rated output:</th>
<th>%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>O₂ at maximum rated output:</th>
<th>%</th>
<th>O₂ at minimum rated output:</th>
<th>%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CO at maximum rated output:</th>
<th>ppm</th>
<th>CO at minimum rated output:</th>
<th>ppm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flue gas temperature at maximum rated output:</th>
<th>°C</th>
<th>Flue gas temperature at minimum rated output:</th>
<th>°C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximum measured flow temperature:</th>
<th>°C</th>
<th>Minimum measured flow temperature:</th>
<th>°C</th>
</tr>
</thead>
</table>

System hydraulics:

<table>
<thead>
<tr>
<th>[] Low loss header, type:</th>
<th>[] Additional expansion vessel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[] Heating circuit pump:</th>
<th>Size/pre-charge pressure:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[] DHW cylinder/type/number/heating surface output:</th>
<th>Automatic air vent valve installed:</th>
<th>[] yes</th>
<th>[] no</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[] System hydraulics checked, notes:</th>
<th></th>
</tr>
</thead>
</table>

Commissioning report for the appliance

Modified service functions: (Select the modified service functions and enter the values here.)

<table>
<thead>
<tr>
<th>Example: service function 7.d changed from 00 to 01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

“Heatronic settings” label filled out and affixed

Heating control unit:

- **FW 100** | **FW 200** | **FW 500** | **FR 110**
- **TA 250** | **TA 270** | **TA 300**
- **FB 10** × pce, heating circuit code(s):
- **FR 10** × pce, heating circuit code(s):
- **FR 100** × pce, heating circuit code(s):
- **ISM 1** | **ISM 2**
- **ICM** × pce | **IEM** | **IGM** | **IUM**
- **IPM 1** × pce, heating circuit(s) coding:
- **IPM 2** × pce, heating circuit(s) coding:

Miscellaneous:

- Heating control unit set, notes:
- Modified heating control unit settings documented in the controller operating/installation instructions

The following work has been carried out:

- Electrical connections checked, notes:
- Condensate trap filled
- Function check carried out
- Combustion air/flue gas test carried out
- Was a tightness test carried out on the gas and water sides?

- Commissioning includes checking the settings, a visual boiler tightness test and a function check of the boiler and control unit. The system installer conducts a test of the heating system.
- If, in the course of commissioning, any small installation faults in Bosch components are noticed, Bosch is always willing to remedy these installation faults after release by the customer. This does not imply any liability for the installation performance.

- The system named above has been checked to the extent described.

<table>
<thead>
<tr>
<th>Name of service engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date, user's signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____________________</td>
</tr>
</tbody>
</table>

Affix the test report here.

<table>
<thead>
<tr>
<th>Date, system installer's signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>___________________________</td>
</tr>
</tbody>
</table>